High Current Wafer Probing Solution

Mark McLaren, Director of Sales and Marketing.
Integrated Technology Corporation
TEL: 480-968-3459, X365
Email: markm@inttechcorp.com
Content of Presentation

• The Problem
• ITC Background
• Goals
• Device to be Tested
• Test System
• Observations
• Conclusions
• Acknowledgements
The Problem

- Testing moving from packaged parts to wafer level or bare die level
- Drivers for this
 - Known Good Die (KGD)
 - Bumped Die
 - Chip on Board
- Probe technologies have been developed to address test speeds, high pin counts, high parallelism
- No technology available for high current probing
Background Information - 1

- Since late 1980’s ITC has been the leading supplier of Dynamic “surge” test systems to the Power MOSFET and IGBT mfr’s.
- Volume test is the Unclamped Inductive Switching (UIS) test
- Until recently this has been a ruggedness test at the package level
Background Information - 2

- New market drivers have seen increase in UIS test volume
 Automotive
 Power management – Portable electronics, laptops, PC’s
- Many of these applications require on wafer or bare die test in some cases up to 200A
• Present approach
 • Spread the current through multiple probes, hope the contact is good enough with sufficient probe redundancy
 • Run test at lower current – not very informative
 • As probes lose contact the good probes carry increasing current
Background Information - 4

- As a manufacturer of both the UIS test systems and probe card analyzers ITC has a knowledge base that puts us in a unique position to address the problem.
Program Goals

• Develop a method to control the current flowing in each probe
• Stop the probing operation if the current in an individual probe exceeds the pre-defined value
• Develop a method to measure the contact resistance of each probe to inhibit testing if there are insufficient low resistance probes available
Approach to the Solution

• Test device is a power semiconductor device requiring UIS testing at currents up to 200A at 1000V as a bare die
• Test system to be used is the ITC55100 UIS tester (200A/2500V)
• Probe card is a Celadon ceramic tile card with 111 probes
• Manual Probe station and chip holder supplied by Hisol, Japan
Complete System
Chip Probe System
Top-side of Probe Card
Bottom side of Probe Card
Celadon Probe Card Specs

- **Ceramic Type:** 72mm Rectangle
- **Thickness:** 3.3mm
- **Spacer:** No
- **Single/Multisite Tile Design Orientation of Tile:** Custom
- **Number of Sites:** 1
- **Die Step X (in microns):** 0.0
- **Die Step Y (in microns):** 0.0
- **Probes Type:** BeCu
- **Radius of Tip (mm):** Flat 2.5mil
- **Beam Length (mm):** Varies
- **Probes Per Site:** 111
- **Probe Count:** 111
Probe Card Interface Board
Typical power device layout

- Large pads on top side are source or emitter connections
- Drain or collector connection is through back of chip
- Gate can be contacted with single probe
Device connection requirements

- **Celadon card** can handle a pulsed current of ~6A/probe
- **Test to be run at 200A**, card has been designed with 56 probes on the emitters and 40 probes touching down on the chip carrier for the collector
ITC55WPS Current Limit System
ITC55WPS Current Limit System

- System has one current limiter (CL) channel per high current probe needle
- 96 channels required, each set for maximum of 6A per probe
- 16 channels per board
- Protection of tester, probe card and DUT is key
Design Aims - Current Limiter (CL)

- Fast Response
- Low Resistance Path
- Good surge characteristics – Rugged
- No overshoot/ undershoot
- Simple – potential to need lots of them in any application
System Overview - 1

- Each probe path will have different resistance
- Higher resistance paths will cause that probe to carry less current
- Redundancy means we could lose the equivalent of 22 probes on the emitter or 6 probes on the collector and still have sufficient probes to carry current
System Overview - 2

• The CL protects each probe by limiting max current per probe to 6A
• We monitor the voltage on each current limiter, if it becomes greater than 5V we have a problem
 • Insufficient good probe contacts available to carry the current
 • Device failed in one area causing all current to flow in that area
Ideal Current Limiter Response

Ideal Current Limiter

Volts

Amps
System Overview - 3

- At the set current the limiter becomes a current source
- The voltage across the best current limiter is a reflection of the voltage drop on the highest resistance probe
System Overview - 4

- At the point the voltage on any CL rises to 5V the test needs to be terminated in a way that protects the tester, the probes and device from the high current.
- CL sends signal through a trigger circuit to fire an SCR
- This sets up parallel path, high current is removed from DUT and probe needles preventing damage
Observations/Concerns

- Chip carrier must make good contact with back of chip to avoid localized arcing and chip damage
- Ability to read contact resistance on each probe would improve system capability
- Probe cards must be maintained to give good contact on all probes
Waveforms at 70A

--- Test Parameters ---
Rg=12ohm, Vg=15V,
Id=70A, L=100uH,
Vd=75V, clampSW=OFF
Double pulse= OFF,
E=245mJ, RatedVds=1000V
Pulse dip switch=No2ON,
No3OFF, clampV=1110V
Zener=RD15F
Waveforms at 150A

---Test Parameters---
Rg=12ohm, Vg=15V,
Id=150A, L=100uH,
Vd=75V, clampSW=OFF
Double pulse=OFF,
E=1125mJ, RatedVds=1000V
Pulse dip switch=No2ON,
No3ON, clampV=OFF
Zener=RD15F
Conclusions at this point

- Basic concept is working
- Contact to chip carrier is critical
- We are terminating the test based on a voltage rise on the CL for a good probe
- An additional capability that would improve the system would be to look at contact resistance of each probe at the start of the test
Future Developments

• Ability to detect/measure the contact resistance path for each probe fast enough not to impact throughput

• Look at wafer probe applications

• Look at other applications requiring high current carrying capabilities
Acknowledgements

• Steve Clauter, Gary Rogers, Austin Hsu and Rod Schwartz – ITC
• Bryan Root – Celadon
• Taichi Ukai, Takenobu Hayashi – HISOL, Japan