Maximizing the Performance of an Atypical Cantilever Probe Wire Material

by Frederick Taber (Consultant to APS)

Frederick Taber, Consultant 34 Kuchler Drive LaGrangeville, NY 12540 taberconsulting@optonline.net

Before We Begin

- What is An Atypical Probe Wire Material?
- Why Was This Work Undertaken?

Before We Begin

• What is An Atypical Probe Wire Material?

Atypical: "Not typical" (*)

Well, that's not much help

(*) – Webster's Dictionary

SWTW 2006

What is An Atypical Probe Wire Material?

Probe Related Publications Probe Industry Usage

Tungsten; Tungsten-Rhenium Paliney® BeCu NewTek[™]

Focus is on NewTek[™]

SWTW 2006

Why Was This Work Undertaken?

- Probe Card Manufacturers & End Users
 - Enthusiastic Support By Those Who Have Learned to Work With NewTek[™]
 - Low & Stable Contact Resistance
 - Less Cleaning
 - Lower Force

Take Steps to Gain Wider Acceptance

Why Was This Work Undertaken? Maximize What? And Why?

Accelerate Growth of the Knowledge Base

- Traditional Materials Have Decades of Learning and Familiarity (and myths!)
- Custom & Practice Affect Acceptance of New Materials
- For the Probe Card Manufacturer
 - Optimize The Build Process
- For Users
 - Provide Introduction & Applications Advice
- For Client
 - Identify Manufacturing Process Improvements

SWTW 2006

AGENDA

- A Little Bit of History
- Scope of the Work
- Experiment #1
- Experiment #2
- Summary
- Acknowledgements
- References

SWTW

2006

SWTW 2006

First Presented at '99 SWTW

- "Low and Stable Contact Resistance With Reduced Cleaning.....A Paradigm Shift" by Jerry Broz and Rey Rincon
 - Alpha Testing; Preliminary Beta Testing
- Evaluation Engineering Article 9/99

 "Understanding Probe-Contact a-Spot Oxidation During Elevated-Temperature Wafer Test" by Jerry Broz and Rey Rincon

Presented at '99 ITC

- "Probe Contact Resistance Variations During Elevated Temperature Wafer Test" by Jerry Broz and Rey Rincon
 - Preliminary Production Level Beta Testing
- Product Announcement: January 2002

About NewTek[™]

PROPERTY	Tungsten	Tungsten	Beryllium	Paliney 7®	NewTek
		Rhenium	Copper		VerTek
Electrical and Thermal Properties:					
Bulk Resistivity at 20°C (mohm-cm)	5.59 to 5.86	9.15 to 9.65	6.10 to 7.93	30.9 to 34.9	55.1 to 58.2
Melting Point (°C)	3410	3410	870 to 980	1015	1300 to 1350
Coeff. of Lin. Exp. (0 to 500 °C)	4.45 ×10 ⁻⁶	4.45 ×10 ⁻⁶	17.8 ×10 ⁻⁶	13.5 ×10 ⁻⁶	7.6 ×10 ⁻⁶
(mm/mm ×1/°C)					
Material Properties:					
Elastic Modulus (GPa)	394.5±6.1	395.7±6.4	131.5±5.5	121.2±4.9	179 to 181
Tensile Strength (GPa)	2.65 to 2.90	2.90 to 3.36	1.28 to 1.31	0.90 to 1.25	1.30 to 1.55
Vicker's Hardness (100 gm load) (kg/mm²)	665 to 738	745 to 877	288 to 384	320 to 357	382 to 438

(*) from earlier referenced work

Maximizing the Performance of an Atypical Cantilever Probe Wire Material

About NewTek[™] as a Probe Material

SWTW 2006

Scope of the Work

- Work in Progress
 - Share Design of Experiments and Data Collected to Date
 - Analysis / Conclusions / Results / Actions are Just Getting Underway
 - A SWTW 2007 Paper?
- Conduct Experiments in 2 Areas
 - Wire Bending
 - CRes & Force

SWTW 2006

- Varied Customer Experiences
 - Observe and Understand the Probe Card Manufacturing Process
 - Caused by a Process Step?
 - Tip & Taper Specifications?
 - Look at the Material Properties & Manufacturing Process
 - Inherent in the Material?
 - Introduced by a Process Step?

SWTW 2006

An Example of a Manual Wire Bending Tool

Photo Courtesy of SV Probe

SWTW 2006

- A Clue: Optical Comparator Showed Flattening at the Knee
 - Post Wire Bending

 Select Relevant Samples for SEM Images

 Cracking / Slip Deformation Observed

SWTW 2006

- Caused by a Process Step?
- Tip & Taper Specifications?
- Inherent in the Material?
- Introduced by a Process Step?

Conduct Wire Bend Experiments

- Wire Bend Experiment Matrix
 - Multiple Wire Diameters
 - Tapered & Untapered Wires
 - Typical Tip Length(s) & Tip Diameter(s)
 - Two Bending Techniques
 - Bend Angles from 180° (unbent) to 90°+

Untapered Wire; 90° Bend

Tapered Wire; 90° Bend

Taper AND Bend Technique Contribute

SWTW 2006

- Next Steps
 - Investigate Taper Contribution
 - Recommendations for: shape, length, angle, process, etc.
 - Develop a Recommended Bending Protocol

To Optimize the Wire Bending

Another Look at CRes

 Build on Prior Work
 Establish a Baseline for Additional Testing

 Quantify Low Probe Force Reputation
 Develop Cleaning Recipes

Compare to WRe

SWTW 2006

- Test Methodology
 - Utilize International Test Solutions' Applications Laboratory
 - Single Probe Mounted on a Blade
 - Collect Resistance,
 Overtravel and Force
 Data
 - Blanket Al Wafer
 - Rhodium Plate

Probes Produced by International Contact Technologies

SWTW 2006

- Test Setup
 - Testing Conducted at and by International Test Solutions
- 4-pt. CRes
- Low g Load Cell
- Hi-mag Optical Imaging
- Precision X-Y-Z
- Cleaning Station
- Rhodium Shorting Block

Bench-top Materials Testing System

Photos:

Courtesy of International Test Solutions

SWTW 2006

- Tests Conducted
 - Conditioning

SWTW 2006

- A= Right Out of The Box
- B= Clean After Setup; Before Running Tests
- Characteristic Curves
 - Overtravel, CRes & Probe Force
 - 3x on Rhodium Plate & Blanket Al Wafer
 - After 0K and 50K Touchdowns
- Spiral and Micro-Stepping 50K TD's
 - Run a Characteristic Measurement Every 250 TD's

Maximizing the Performance of an Atypical Cantilever Probe Wire Material

SWTW

2006

Maximizing the Performance of an Atypical Cantilever Probe Wire Material

Experiment #2 - Stepping Patterns -

- Spiral Stepping
 - Start @ Center Then Spiral Outward
 - Maximizes TD's per Wafer Coupon
- Micro-Stepping
 - Array 'Chip-site' Like
 - Step Row by Row Within a 'Chip-site'
 - Easily Locate A Specific Probe Mark

Spiral Stepping Scrub Marks

CRes

Force

Micro-Stepping Scrub Marks

SWTW 2006

Maximizing the Performance of an Atypical Cantilever Probe Wire Material

- Spiral Stepping
 - 50K TD's
 - Measure Every
 250 TD's
 - Al Wafer

WRe

Force (g) / Resistance (ohms)

5

NewTek™

41 21 61 81 101 121 141 161 181 Touchdowns (x 250) Force Resistance WRe (Spiral Pattern) - Al Wafer F Force (g) / Resistance (ohms) 3 21 41 61 121 141 161 181 1 101 Touchdowns (x 250) Resistance 🗕 - Force

CRes

Force

NewTek (Spiral Pattern)

mound

NewTek[™]: Lower Stable CRes & Lower Force

MORE ANALYSIS UNDERWAY

SWTW 2006

- **Micro-Stepping** •
 - 16K TD's
 - Measure CRES Every TD
 - Al Wafer
 - 3x Rhodium Plate Every 1K TD's
 - No Cleaning

NewTek[™]: Lower Stable **CRes & Lower Force**

MORE ANALYSIS UNDERWAY

CRes

Force

Touchdowns Resistance @ Overtravel - Al

30

SWTW 2006

Maximizing the Performance of an Atypical Cantilever Probe Wire Material

NewTek[™]

WRe

0.000

- Video Capture
 - Characteristic Curve
 - Spiral Stepping
 - Micro-Stepping

Example: NewTek[™] Characteristic Curve AI @ 0K TD's

SWTW 2006

- Next Steps
 - Further Analysis of Test Results
 - Data is 'Hot off the Press'
 - Early Look For SWTW Audience
 - Consider Tests for Comparisons to BeCu and Paliney®
 - Investigate Cleaning Recipes
 - Potential to do Full Probe In-situ Testing
 - Requires a Partner to Work With

SWTW 2006

Summary

- Growth of the NewTek[™] Knowledge Base
 Leading to More Understanding By Probe Card Manufacturers and Users
- Developing Optimized Bending Protocols

 Investigating Taper Contribution
- CRes / Force
 - Experimental Results Very Promising
 - More Analysis Underway
 - Follow-on Direction

SWTW 2006

Acknowledgements

- SV Probe (Pete Rogan)
 - Support of the Wire Bending Experiment
- International Test Solutions (Jerry Broz, Ph.D. / Gene Humphrey)
 - Support & Execution of CRes /Force Testing
- Gideon Labs (Jack Goho)
 - SEM Images and Analysis
- Bill Williams
 - CRes & Force Test Planning
- International Contact Technologies (Joe Baker)
 - Probe Build (and a lot of guidance)
- Advanced Technology Development Facility (Doug Woodal)
 - Blanket AI Wafer Guidance & Production
- Advanced Probing Systems (Michelle Gesse / Ken Black)
 - Support & Funding of this Project

References

SWTW

- "Low and Stable Contact Resistance With Reduced Cleaning....A Paradigm Shift"; Jerry J. Broz Ph.D. & Reynaldo M. Rincon 1999 SWTW Proceedings;
- "Probe Contact Resistance Variations During Elevated Temperature Wafer Test"; Jerry J. Broz Ph.D. & Reynaldo M. Rincon; 1999 ITC Proceedings
- "Failure Mechanisms In Probe Card Materials"; Norman J. Armendariz; 1996 SWTW Proceedings
- Understanding Probe Contact a-Spot Oxidation During Elevated Temperature Wafer Test"; Jerry J. Broz, Ph.D. & Reynaldo M. Rincon; Evaluation Engineering 09/99
- "Introduction to Probe Cards How They are Built & Tested"; Rod Schwartz; 1998 SWTW Proceedings
- "Effects of 'On the Shelf' Probe Tip Oxidation on Contact Resistance"; Advanced Probing Systems press release 07/1999
- "NewTek[™] Probe Needle Material"; Advanced Probing Systems press release 01/2002
- Publicly available datasheets and technical information on various metals used in the probe card industry