

Dynamic Test Cell Controller

Test Cost Reduction at no compromise in Wafer Sort Operations

Rob Marcelis, Salland Engineering (Europe) BV rob.marcelis@salland.com

Rob Marcelis

Introduction

Consistent increase of test cost over the years

Manual entry of relevant data

- Set-ups, test programs
- Lot numbers, etc

Information gathering done by Tester & prober independently Inefficiency in current process caused by lack of control No alternatives on individual equipment for improvements Integration need for "factory automation" environment More "bare die" to be delivered in the future

The need for central control unit!!

Original set-up

- Traditional the prober and the tester form the test-cell
- Tester and prober communicate with each other
- Set-ups are loaded from the network to the prober
- Test programs are loaded from the network to the tester
- At the end wafer, maps are stored on the network by the prober
- STDF records are stored on the network by the tester
- No direct relation between wafer map and STDF

Original set-up

DTC set-up

- DTC in between tester and prober
- No results to the prober
- Installation of tester daemon on the tester workstation
- Prober will be under remote control as well as the tester
- Events will be handled and initiated by the DTC
- All advantages offered by the DTC can now be used!!

Prober control

- Control map optimization
- Communication overhead reduction
- API functionality
- Retest recovery analysis
- Tester control
 - Tester daemons

Prober control

- Control map optimization
- Circular top/down versus optimized
 - Circular top/down 150 touchdowns
 - Optimized 138 touchdowns
 - 8% reduction!! On touchdowns
 - 12.5% reduction on travel route

Rob Marcelis

Prober control

- Communication overhead reduction
 - Standard communication flow:
 - For Electroglas probers:

Prober; Start test together with X/Y coordinates and site code Tester; End of test with binning

- Prober; Map update, internal house keeping, move to next die
- With DTC to Electroglas:

DTC to prober;Move X/YProber to DTC;At positionDTC to tester;Start test together with X/Y info and site codeTester to DTC;End test with binningDTC to prober;Move X/Y

Saving: Internal house keeping and map update on prober

Prober control

- Communication overhead reduction
 - Standard communication flow:
 - For TSK Probers:

Prober;	SRQ to inform at position
Fester;	SRQ to acknowledge
Fester;	Ask for site code information
Prober;	Answers with site code info
Fester;	Ask for X/Y coordinates
Prober;	Answers with X/Y information for site "0"
Fester;	Receipt of X/Y info is trigger to start test
Fester;	At end of test send binning.
Prober;	Map update, internal house keeping, move to next die
Prober;	SRQ to inform at position

• With DTC to TSK:

DTC to Prober; Move X/Y DTC to Tester; During Prober index send site code Prober to DTC; At position DTC to Tester; X/Y info to Start test Tester to DTC; end test with binning DTC to Prober; Move X/Y

Saving: Internal prober house keeping and map update plus part of tester communication during indexing of prober

Prober control

- API functionality
 - On each event hook a separate program can be launched. New functionality can be added by this mechanism.
- Retest recovery analysis
 - Only retest those bins which have proven to be recoverable. In practice this saves 50-70% of the retest time.
 - Combine this with direct retest instead of retest at the end, saving is also on the travel time.

Tester control

- Tester daemons
 - Via the tester daemon, remote control is offered over the tester
 - Combine this with direct retest instead of retest at the end, saving is also on the travel time.
 - Real time test data is available
 - Instruction to load and run programs can be given

System Utilization

Real time monitoring

- Count down to next assist moment
- Alarm pole support
- Differentiate down time between tester and prober
- Reporting
 - Web report to show floor status in one view
 - Ability to show down to wafer map level
 - Graphical and textual reports showing Utilization
 - Per selected period
 - Per selected machine
 - Entire sort floor

Dynamic Test Cell Controller

Rob Marcelis

Real time data grabbing

- Tester daemon generates real-time tester data
 - DTC could decide for pass/fail
 - No need to switch-on data log function on tester
 - STDF records generated by the DTC
 - Ideal place for wafer map to "meet" STDF record
 - 100% data integrity
 - Abort resume without corruptions
 - One data log format regardless the connected tester

Dynamic Test Cell Controller

Real time analysis

- Trend watching and responding
- Adaptive testing
- Dynamic sampling, result driven
- Part Average Testing
- Cluster detection
- Smart Sample Probe
- Dynamic lot composite, dynamic control map
- Drift map generation

Dynamic Test Cell Controller

Cluster detection

- Cluster detection is done according the Intel investigation:
 - "Reliability Improvement and Burn-in Optimization Through
 - The Use of Die Level Predictive Modeling"

First shown is implementation of the Intel document,

followed by cluster map calculation

Part Average Testing

PAT example on the DTC

- Real time data is stored in "STDF"
- At end of wafer, first cluster detection takes place
- Followed by PAT analysis or outlier detection
- Cluster bin is 31, PAT bin is 30

Dynamic Test Cell Controller

Rob Marcelis

Dynamic sampling

SWTW - 2006

Rob Marcelis

History tracking

- Full traceability of all events during wafer/lot
- Overview of all decisions when and why
- In file format and/or report format

Quality

Touchdown monitoring

- Per die amount of touchdowns in the map
- Auto rebinning after exceeding of max. number of TD
- Touchdown display map and report
- Probe card database
 - Keep track of touchdowns per card
 - Yield trend
 - Yield per site for multi-site probe cards
- PAT; outlier detection

Epilogue

- By understanding the concept it becomes clear that the DTC will offer;
 - Efficiency improvements
 - Better test-cell utilization
 - Easily to migrate with "work stream" environments
 - Inkless & paperless wafer sort
 - Higher quality standard
 - Overall test cost reduction
 - A tool that introduce a new look on wafer sort
 - Future proof!!

Thank you for your attention