Dynamic Test Cell Controller

Test Cost Reduction at no compromise in Wafer Sort Operations

Rob Marcelis, Salland Engineering (Europe) BV
rob.marcelis@salland.com
Introduction

- Consistent increase of test cost over the years
- Manual entry of relevant data
 - Set-ups, test programs
 - Lot numbers, etc
- Information gathering done by Tester & prober independently
- Inefficiency in current process caused by lack of control
- No alternatives on individual equipment for improvements
- Integration need for “factory automation” environment
- More “bare die” to be delivered in the future

The need for central control unit!!
Original set-up

- Traditional the prober and the tester form the test-cell
- Tester and prober communicate with each other
- Set-ups are loaded from the network to the prober
- Test programs are loaded from the network to the tester
- At the end wafer, maps are stored on the network by the prober
- STDF records are stored on the network by the tester
- No direct relation between wafer map and STDF
Original set-up
DTC set-up

- DTC in between tester and prober
- No results to the prober
- Installation of tester daemon on the tester workstation
- Prober will be under remote control as well as the tester
- Events will be handled and initiated by the DTC
- All advantages offered by the DTC can now be used!!
DTC set-up

Dynamic Test Cell Controller

Tester

DTC

Prober

Network

daemon

Eot, binning

Start test,

X/Y

eol, eow

Wafer maps
STDF files

control map,
Set-up data

Set-ups

Real–time test data
Remote tester control

Test programs

Network
Process Optimization

- Prober control
 - Control map optimization
 - Communication overhead reduction
 - API functionality
 - Retest recovery analysis

- Tester control
 - Tester daemons
Process Optimization

- Prober control
 - Control map optimization
 - Circular top/down versus optimized
 - Circular top/down 150 touchdowns
 - Optimized 138 touchdowns
 - 8% reduction!! On touchdowns
 - 12.5% reduction on travel route
Process Optimization

• Prober control
 – Communication overhead reduction
• Standard communication flow:
• For Electroglas probers:
 Prober; Start test together with X/Y coordinates and site code
 Tester; End of test with binning
 Prober; Map update, internal house keeping, move to next die
• With DTC to Electroglas:
 DTC to prober; Move X/Y
 Prober to DTC; At position
 DTC to tester; Start test together with X/Y info and site code
 Tester to DTC; End test with binning
 DTC to prober; Move X/Y

Saving: Internal house keeping and map update on prober
Process Optimization

• Prober control
 – Communication overhead reduction
 • Standard communication flow:
 • For TSK Probers:
 Prober; SRQ to inform at position
 Tester; SRQ to acknowledge
 Tester; Ask for site code information
 Prober; Answers with site code info
 Tester; Ask for X/Y coordinates
 Prober; Answers with X/Y information for site "0"
 Tester; Receipt of X/Y info is trigger to start test
 Tester; At end of test send binning.
 Prober; Map update, internal house keeping, move to next die
 Prober; SRQ to inform at position
 • With DTC to TSK:
 DTC to Prober; Move X/Y
 DTC to Tester; During Prober index send site code
 Prober to DTC; At position DTC to Tester; X/Y info to Start test
 Tester to DTC; end test with binning
 DTC to Prober; Move X/Y

Saving: Internal prober house keeping and map update plus part of tester communication during indexing of prober
Process Optimization

- Prober control
 - API functionality
 • On each event hook a separate program can be launched. New functionality can be added by this mechanism.
 - Retest recovery analysis
 • Only retest those bins which have proven to be recoverable. In practice this saves 50-70% of the retest time.
 • Combine this with direct retest instead of retest at the end, saving is also on the travel time.
Process Optimization

• Tester control
 – Tester daemons
 • Via the tester daemon, remote control is offered over the tester
 • Combine this with direct retest instead of retest at the end, saving is also on the travel time.
 – Real time test data is available
 – Instruction to load and run programs can be given
System Utilization

- Real time monitoring
 - Count down to next assist moment
 - Alarm pole support
 - Differentiate down time between tester and prober

- Reporting
 - Web report to show floor status in one view
 - Ability to show down to wafer map level
 - Graphical and textual reports showing Utilization
 - Per selected period
 - Per selected machine
 - Entire sort floor
Real time data grabbing

- Tester daemon generates real-time tester data
- DTC could decide for pass/fail
- No need to switch-on data log function on tester
- STDF records generated by the DTC
- Ideal place for wafer map to “meet” STDF record
- 100% data integrity
- Abort resume without corruptions
- One data log format regardless the connected tester
Real time analysis

- Trend watching and responding
- Adaptive testing
- Dynamic sampling, result driven
- Part Average Testing
- Cluster detection
- Smart Sample Probe
- Dynamic lot composite, dynamic control map
- Drift map generation
Cluster detection

- Cluster detection is done according the Intel investigation:
 “Reliability Improvement and Burn-in Optimization Through
 The Use of Die Level Predictive Modeling”

First shown is implementation of the Intel document, followed by cluster map calculation
Part Average Testing

- PAT example on the DTC
 - Real time data is stored in “STDF”
 - At end of wafer, first cluster detection takes place
 - Followed by PAT analysis or outlier detection
 - Cluster bin is 31, PAT bin is 30
Dynamic sampling

- Smart Sample probe example

100% measured map
History tracking

- Full traceability of all events during wafer/lot
- Overview of all decisions when and why
- In file format and/or report format
Quality

Dynamic Test Cell Controller

- Touchdown monitoring
 - Per die amount of touchdowns in the map
 - Auto rebinning after exceeding of max. number of TD
 - Touchdown display map and report

- Probe card database
 - Keep track of touchdowns per card
 - Yield trend
 - Yield per site for multi-site probe cards

- PAT; outlier detection
Epilogue

• By understanding the concept it becomes clear that the DTC will offer;
 – Efficiency improvements
 – Better test-cell utilization
 – Easily to migrate with “work stream” environments
 • Inkless & paperless wafer sort
 – Higher quality standard
 – Overall test cost reduction
 – A tool that introduce a new look on wafer sort
 – Future proof!!
Cost of test

Dynamic Test Cell Controller

$ vs.

time now

SWTW - 2006

Rob Marcelis
Thank you for your attention