Closing the Loop:

Incorporation of Sort Floor Data to Improve Probe Card Performance

Presented By:

Applied Precision, LLC.

John Strom – Lifetime Fellow, Principal Software Engineer

Partners

Alan Romriell, Spansion Inc.

What is the best method to optimize the performance of the probe card in the test cell?

- Cannot directly measure probe card performance within the test cell
 - The wafer is not transparent
 - Probe Card Analyzer (PCA) qualifies probe card prior to wafer test
 - Probe Mark Analyzer (PMA) quantifies the probe card performance post probe via scrub mark analysis
- PCA and Test Cell environments are inherently different
 - Friction
 - Overtravel differences (Deflection, Test Interface)
 - Temperature differences

• Analyze PCA and PMA data to build Closed Loop Model

• Apply Closed Loop Model in PCA to deliver optimized probe cards to the test cell via predicted probe card measurements

Scrub Measurement Correlation

Closing the Loop

1) PCA Measurement

2) Quantify PCA differences with Test Cell

3) Develop Closed Loop Model

4) Implement Predictive Scrub with PCA

Center Position

No Overtravel Position (NOT)

PCA measurement

waferWoRx measurement

Predicted Scrub

The Design of Experiment

Validate Closed Loop Metrology improvements across a range of conditions

- Various probe card technologies
- Different tester types & different probers
- Temperature range (cold, ambient, hot)

Test Procedure

- Run Planarity & Alignment on PCA
- Probe wafer at ambient
- Probe wafer at temperature
- Run scrub mark analysis with PMA
- PCA and PMA data analysis to create predictive scrub model
- Apply predictive scrub model to enhance wafer scrub results

Terminology

Closing the Loop

Scrub Signatures - Case Study #1

Closing the Loop

Superpad display of probes and scrubs

• Medium size array (< 100mm, ~4000 probes)

PCA all probes PMA *ambient* all probes prober errors removed PMA @ temperature all probes prober errors removed

Perpendicular Scrub Data – Case Study #1

Closing the Loop

Probe Card Scaling: perpendicular scrub positions PCA Scrubs vs Wafer Scrubs 5 Perpendicular Scrub Position (Microns) PCA 4 Wafer Scrub Ambient 3 -Wafer Scrub Temp 2 0 -2 -3 -4 -5 Perpendicular Data Sample of probes sorted by X position

- Wafer scrubs at ambient and temperature have minimal scaling effects
- Good correlation between PCA and wafer scrubs: 2.1 microns @ 3 sigma

Parallel Scrub Data – Case Study #1

Closing the Loop

Center position correlation: 7.2 micron @ 3 sigma

NOT Position Data – Case Study #1

Closing the Loop

PCA NOT Edge Position vs. Wafer Scrub Start Position

- PCA Scrub signature starts "earlier" the larger the probe diameter
- Wafer Scrub signature begins "later" the larger the probe diameter

Overtravel Differential – Case Study #1 Closing the Loop

- Wafer and PCA scrub lengths are roughly equal
- Expect wafer scrubs to be shorter than PCA due to skating
- Therefore OT on the test cell is larger than OT on the PCA

Closed Loop Model Results: Case Study #1 Closing the Loop

Predictive PCA Scrubs vs. Wafer Scrubs

 Predictive scrub measurements corrected skating effects and OT differential

- Predicted Scrub Position correlation: 2.6 microns
- Predicted Scrub Length correlation: 3.7 microns

Closed Loop Model Results: Case Study #1

Closing the Loop

Closed Loop Modeling improvements
2.7X improvement in Scrub Position predictability
1.4X improvement in Scrub Length predictability

Scrub Signatures - Case Study #2

Closing the Loop

- Medium size array (< 100mm, ~4000 probes)
- PCA scrub signature is larger than wafer scrub signature
- Ambient and Temperature wafer scrub signatures are very similar

Perpendicular Scrub Data – Case Study #2

Closing the Loop

- Wafer scrubs at ambient and temp have minimal scaling effects
- Good correlation between PCA and wafer scrubs: 2.2 microns @ 3 sigma

Parallel Scrub Data – Case Study #2

Closing the Loop

Wafer Scrub lengths are longer in the middle of the card

Diameter vs. Scrub Width – Case Study #2 Closing the Loop

PCA probe diameter vs. Wafer scrub width 30 28 26 24 22 Microns **Probe Diameter** 20 Scrub Width 18 16 14 12 10

• Wafer Scrub width is 12 microns less than the PCA probe diameter

- Shape of probe PCA optical size vs. Wafer scrub size
- Wafer Scrub length is also 12 microns less than the PCA scrub length

Scrub length vs. Radial Position – Case Study #2 Closing the Loop

- Probes in the center of the probe card are scrubbing farther on the wafer
- PCA scrub lengths are relatively flat as a function of radius

Closed Loop Model Results – Case Study #2 Closing the Loop

Closed Loop Model Results: Study #2 Closing the Loop

Improvements using Closed Loop Modeling

Closed Loop Modeling improvements

1.6X improvement in Parallel Scrub Position

4.7X improvement in Scrub Length

Test Cell Improvements Summary: All Studies

- 1. Good results between PCA and test cell when data measurement are insensitive to differences
- 2. Closed Loop Modeling enables significant improvements for Scrub Length and Scrub Position
- 3. Closed Loop Model enabled PCA can deliver optimized probe cards to the test cell via predicted probe card measurements

Closing the Loop

Conclusions

What is the best method to optimize the performance of the probe card in the test cell?

- Build Closed Loop Model
- Use a Closed Loop Model enabled PCA to deliver optimized probe cards to the test cell via predicted probe card measurements

Acknowledgements

Closing the Loop

Spansion

Alan Romriell

Partner-B

Partner-C

Applied Precision Rod Doe Jon Heine Andy Snow