IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Roger Hayward Bob Hansen Cascade Microtech, Inc.

Design Considerations for Parametric-RF Probing in Production Test Environments

June 3-6, 2007 San Diego, CA USA

Outline

- Pyramid Probe Technology
- Parametric Measurements
- RF Parametric
- Design Considerations
 - Contact Resistance
 - Calibration
 - Probe Card Validation

Pyramid Probe Technology

- Full-custom to match die layout
- Thin film high-tech flex-circuit
- Controlled impedance transmission lines

June 3-6, 2007

IEEE SW Test Workshop

Pyramid Probe for Parametric Test

- Inter-die structures for parametric test
- Probe must provide low loss, low noise & low leakage paths to probe tips
- Signal traces are DC-guarded during measurement

- Probe tips
- Guarded signal traces to probe – tips
- Guarded circuit
 board interface

Wafer side view

Precise tip alignmer

WD

HEW

June 3-6, 2007

IEEE SW Test Workshop

4

Parametric Test

- DC / AC Measurements
 - Resistance
 - Leakage current
 - Source impedance
 - Capacitance, inductance
- Techniques
 - C-V
 - I-V
 - HF C-V (to 100-300 MHz)

- RF Measurements (1-40+ GHz)
 - Active:
 - F_t, F_{max}
 - Passive:
 - Inductors, Capacitors
 - Q
 - Techniques
 - RF C-V, I-V
 - Network Analysis
 - (S-Parameters)

RF Measurements

- F_t Active device frequency of unity gain Q Reactance vs. passive losses • F_{max} – Maximum oscillation frequency \bullet

June 3-6, 2007

Combining Parametric & RF Measurements

- ATE systems include parametric + RF capabilities
- Membrane card supports both:
 - Low loss, low leakage, DC parametric
 - RF: Controlled impedance, low loss
- Probe card layout matches on-wafer test structures

June 3-6, 2007

Probe Contact Resistance

- Low contact resistance is important:
 - Stable resistance can be calibrated out;
 - Variations in contact resistance cannot be removed.
- Variations in contact resistance affect:
 - Resistance measurements
 - Device Q calculations
- Example: Inductor Q

Inductance	Frequency	XL	Resistance	Q
10nH	150 MHz	9.4 Ohm	1 Ohm	9
2.2nH	1 GHz	13.8 Ohm	0.8 Ohm	17
400pH	3.5 GHz	8.8 Ohm	0.3 Ohm	30

$$X_L = 2\pi fL$$
$$Q = \frac{X_L}{R}$$

June 3-6, 2007

Probe Contact Resistance

- Example: Inductor Q
 - One-port (S_{11}) calibrated
 - False-positive Q possible due to low R_{contact} during calibration.

June 3-6, 2007

RF Calibration

- Removing the anomalies from the measurement system
 - Eliminate electrical delay
 - Eliminate path loss
- Account for temperature, humidity, aging.
- Routine re-calibration required.
- Measure only the device, not the probe card.
- VNA: Vector Network Analyzer. Measures Reflected Power and Phase.
- Calibration must be performed whenever anything between the VNA and the probe tip has been altered.

IEEE SW Test Workshop

Reflected Power vs. Frequency

Reflected Power and Phase

June 3-6, 2007

RF Calibration

- Removing the anomalies from the measurement system
 - Eliminate electrical delay
 - Eliminate path loss
- Account for temperature, humidity, aging.
- Routine re-calibration required.
- Measure only the device, not the probe card.
- VNA: Vector Network Analyzer. Measures Reflected Power and Phase.
- Calibration must be performed whenever anything between the VNA and the probe tip has been altered.

45555

Reflected Power vs. Frequency

Reflected Power and Phase

June 3-6, 2007

Calibration Techniques

- Cable Calibration:
 - Mechanical Standards:
 - Short, Open, Load, Thru...., ECal, etc.
- Port Extensions:
 - Extend reference plane to the probe
 - Subtract estimated (linear) path loss
- Fixture De-embedding:
 - Characterize path loss for each port
 - VNA augments error-set with this data
- Tip Calibration:
 - Probe onto standards:
 - Short, Open, Load, Thru....
 - Advanced algorithms characterize the errors. Correction factors are stored in the VNA.
- Parametric RF test requires high accuracy, repeatable measurements.

Impedance Standards for RF Calibration

- Useful for tip calibration, probe card validation
- GSG 100um Standards:
 - Shorts, thru paths,50 ohm loads, etc.
- Other structures to match popular probe configurations:
 - Varying pitch
 - Varying topology (GSGSG, etc.)
- Use GSG probe configuration
- Match pad layout to standards, whenever possible.

Establishing a Plan for Calibration

- Choose your calibration algorithm:
 - SOLT, SOLR, LRM, LRRM, etc.
- Have appropriate standards available:
 - ISS mounted on tester
 - ISS on wafer
 - Standards fabricated on wafer
- Establish a calibration schedule
- Determine where the calibration will be implemented:
 - VNA, embedded, PC, etc.
- Validate calibration & probe card assembly:
 - Probe onto known standards
 - Sample structures
- Test the entire procedure with known standards.

- General purpose ISS:
 - Sea of gold, 50 ohm loads.
 - Miscellaneous resistive loads

Probe Card Validation

- Calibrate to the probe tips:
 - SOLR allows for a general purpose thru.
 - LRRM:
 - Highly repeatable measurements.
 - Requires a perfect thru-path.
- Validation:
 - Verify calibration by landing onto known standards.
 - Example: Perfect Short, after an SOLR calibration.

- Smith chart reveals one dot.
 - Magnitude Power (dB) plot reveals all energy is reflected. (The loss variation is minimal).

June 3-6, 2007

IEEE SW Test Workshop

ullet

Probe Card Validation

• Inductor & Capacitor:

- Inductor appears as a short at DC.
- Capacitor appears as an open at DC.

Incorrect Standards

• Poor calibration:

June 3-6, 2007

- When a short is not a short:
 - (left side of Smith chart)
- When an open is not an open:
 - (right side)

- Calibration should never reveal "gain"

Incorrect Calibration

- Example: Long, open transmission line.
 - General pattern matches expectations.
 - Calibration is poor.

June 3-6, 2007

- Verify expectations on the Smith chart.
 - Magnitude power may not reveal enough information.

Probe Card Validation

- Open Transmission Line stub: ۲
 - Two calibration examples:
 - Good cal reveals little or no loss through 40 GHz.
 - Other calibration reveals ~1dB loss at 40 GHz.

Conclusion

- Parametric RF Test establishes improved methods for process monitoring:
 - Device characterization.
 - At-frequency component validation.
- Establish a plan for calibration.
 - Establish a location for calibration standards within the ATE.
 - Know and understand the limitations of your measurements.
- Validate your probe card with something other than your DUT.
 - Develop experience with the system to assure that calibration functions as expected.