IEEE SW Test Workshop Semiconductor Wafer Test Workshop

ROD SCHWARTZ and MARK McLAREN Integrated Technology Corporation

CHALLENGES IN TESTING HIGH FORCE 300mm PROBE CARD ARRAYS

June 3-6, 2007 San Diego, CA USA

0

0

• WHAT IS REQUIRED OF A PROBE CARD METROLOGY TOOL?

 TO TEST AND VERIFY THE ELECTRICAL AND MECHANICAL CHARACTERISTICS OF A PROBE CARD

BACKGROUND

- WHAT DOES THAT MEAN FOR THE DIFFERENT APPLICATIONS?
- PROBE CARD MFR
 - WANTS TO DEMONSTRATE TO ITS CUSTOMER THAT THE CARD HAS BEEN BUILT TO SPECIFICATION, HAS BEEN TESTED AND PASSED AND HERE IS THE DATA TO PROVE IT.
 - PRIMARY CONCERN IS THE PROBE CARD PERFORMANCE

0

BACKGROUND

PROBE CARD USER

- WANTS CONFIDENCE THAT THE CARD WILL PERFORM ACCURATELY AND RELIABLY WITHIN THE WAFER TEST ENVIRONMENT
- THIS INVOLVES THE INFLUENCES OF THE PROBE CARD, THE WAFER PROBER AND THE TESTER TO PROBE CARD INTERFACE

0

0

BACKGROUND

0

- TO PROVIDE A COMPLETE SOLUTION THE METROLOGY TOOL NEEDS TO REPLICATE THE WAFER TEST ENVIRONMENT
- IN A 300mm ONE OR TWO TOUCH APPLICATION THIS HAS ITS OWN CHALLENGES

WAFER TEST ENVIRONMENT

- WAFER PROBER
- PROBE CARD
- TEST SYSTEM TO PROBE CARD INTERFACE – ELECTRICAL AND MECHANICAL

0

0

CHALLENGES

- CHUCK/STAGE ASSEMBLY
- TESTER INTERFACE DESIGN
- HIGH PROBE FORCE
- RESOURCE SWITCHING

0

0

CHALLENGES

CHUCK/STAGE ASSEMBLY

- HIGH FORCES
- PRECISION MOTION VS SPEED
- **STABILITY**

0

0

0

0

• **TEMPERATURE**

WAFER PROBER CHUCK/STAGE

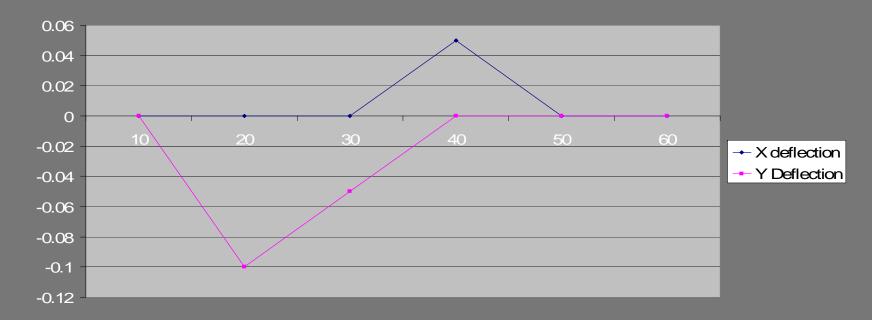
- WAFER PROBER HAS A CHUCK ON AN XYZ DRIVE SYSTEM
- A 300MM SINGLE OR TWO TOUCH PROBE CARD REQUIRES ALL PROBES TO BE OVERDRIVEN AT THE SAME TIME – TOTAL PROBE FORCE MAY ALREADY BE IN THE 120 Kg. TO 180 Kg. RANGE
- IN MANY CASES IT COULD ALSO BE A HOT CHUCK SYSTEM
- MUST BE REASONABLY FAST

0

0

0

METROLOGY TOOL CHUCK/STAGE

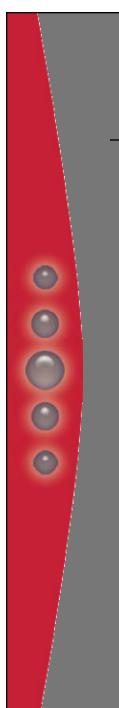

• TO REPLICATE THE WAFER PROBER IT NEEDS AN XYZ STAGE WITH THE CAPABILITY TO OVERDRIVE ALL PROBES ON A MEASUREMENT CHUCK WITH UP TO 180Kg OF FORCE

0

- HIGH PRECISION READING OF POSITION
- AT TEMPERATURE IF THE CUSTOMER REQUIRES IT
- KEY REQUIREMENT IS STAGE STABILITY

METROLOGY TOOL CHUCK/STAGE

INCREMENTAL MOVEMENT IN MILS IN X AND Y AS CHUCK IS LOADED



• EXPERIMENTAL DATA TAKEN AT ITC WITH FORCE CENTERED ON MEASUREMENT CHUCK

0

0

 \bigcirc

CHALLENGES

• TESTER INTERFACE DESIGN

• METROLOGY TOOL GOAL

- REPLICATE THE TEST CONDITIONS
 - REFERENCE PLANE
 - MECHANICAL INTERFACE
 - ELECTRICAL INTERFACE
- AT A "REASONABLE" COST.....

0

• WRONG! – WHY?

- EVERY TEST PLATFORM IS DIFFERENT
 - MOST USE ZIF'S.... BUT NEVER THE SAME ONE AND SOME USE POGO'S
 - ONE USES BOTH
 - EVERYONE HAS THEIR OWN IDEA ABOUT THE REFERENCE PLANE
 - THE PROBE CARD CAN BE HELD DIFFERENTLY

AND THERE'S MORE...

• PROBE CARD SIZE

0

- THERE ARE ROUND ONES AND SQUARE ONES.... 480mm, 440mm, 22" SQUARE....
- THEY MIGHT HAVE 100 CONNECTORS OR MAYBE 36

• STIFFENER DESIGN

- COULD BE STANDARD OR.....
- COULD BE CUSTOMER SPECIFIC
- GETS CHANGED ALL THE TIME

AND SPEAKING OF CUSTOMERS...

- SO IT'S A 5377 480mm CARD 100 ADVANTEST ZIF'S?
- NO 440mm 96 ADVANTEST ZIF'S
- SO IT'S A 5377 440mm CARD 96 ADVANTEST ZIF'S?
- NO 480mm 100 YOKOGAWA ZIF'S

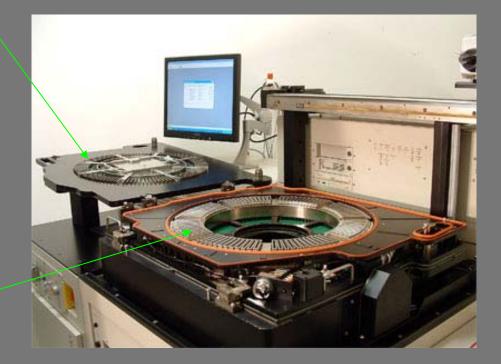
0

COMMON MOTHERBOARDS

- ADVANTEST T5375
- VERIGY V5400
- YOKOGAWA AL6050
- F3000

0

0


ADVANTEST T5375 MOTHERBOARD

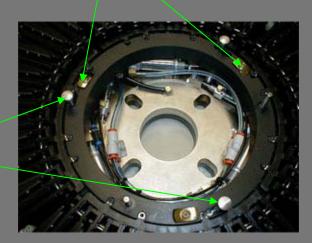
PROBE CARD IS SCREWED TO THE RETAINER

0

REFERENCE SURFACE IS FRONT SIDE OF STIFFENER

96 ADVANTEST ZIF'S

VERIGY V5400 MOTHERBOARD



0

36 XANDEX ZIF'S

REFERENCE PLANE - THE 3 GOLD PADS

NO RETAINER, THE PROBE CARD IS LOADED DIRECTLY ONTO MOTHERBOARD AND PULLED DOWN BY "NAILS"

YOKOGAWA AL6050 MOTHERBOARD

440mm PROBE CARD

REFERENCE IS FRONT OF STIFFENER

0

0

96 YOKOGAWA CONNECTORS

• F3000 MOTHERBOARD

0

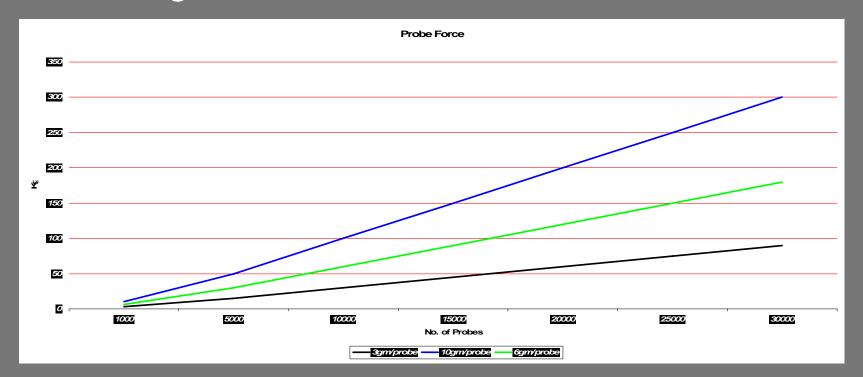
0

3200 DOUBLE ENDED POGO'S

REFERENCE IS FRONT OF STIFFENER

- NEWER TEST PLATFORMS NEW CHALLENGES
- ADVANTEST T5383 NEW CENTER
 DOCKING MECHANISM
- NEXTEST MAGNUM GV LARGE SQUARE PROBED CARD, UNIQUE CENTER DOCKING MECHANISM, "FLOATING" POGO BLOCKS

0


CHALLENGES

0

• TYPICAL FORCE PER PROBE

• 3-10gms DEPENDING ON THE TECHNOLOGY

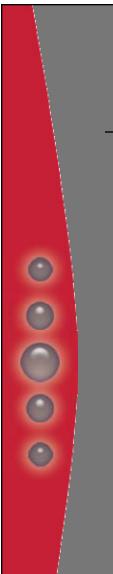
Slide 24

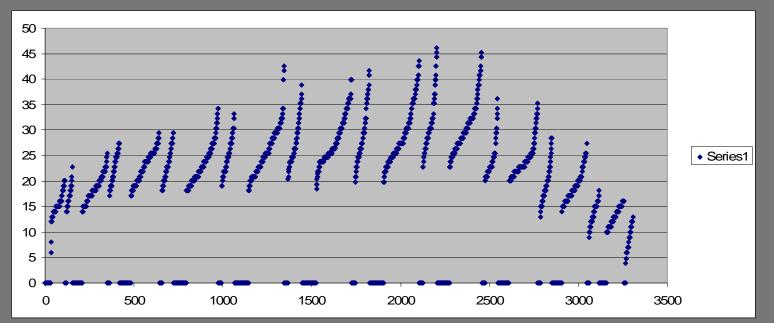
- USING A TYPICAL PROBE FORCE OF 6gm/PROBE
 - 10000 PROBES 60Kg

0

- 20000 PROBES 120Kg
- DATA PRESENTED BY GUNTHER BOEHM, FEINMETALL AT SWT2006

 Z-DEFLECTION IN HIS EXPERIMENTAL SET-UP AT 120KG = 120um


- WHAT DOES THIS MEAN?
- A BIGGER PLANAR WINDOW FOR THE PROBE CARD*
 - SYSTEM Z DEFLECTION INCREASES WITH THE NUMBER OF PROBES TOUCHED DOWN
 - AS MORE PROBES TOUCHDOWN THERE IS A PROPORTIONAL INCREASE IN Z-DEFLECTION OF THE PROBE CARD


*Data presented by Gunther Boehm Feinmetall and from ITC Internal testing

0

0

PLANARITY PATTERN IN A PROBE CARD WITH "SYSTEM" DEFLECTION

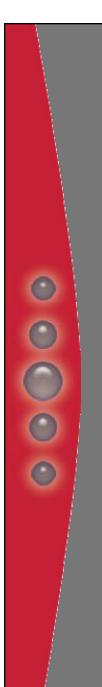
PLANAR WINDOW IS ABOUT 2X EXPECTED

0

- SO IS THIS JUST A PLANARITY PROBLEM?
- IT STARTS WITH PLANARITY BUT IF YOU DON'T UNDERSTAND THE TRUE PLANAR WINDOW...
 - ALIGNMENT, SCRUB AND CRES WILL ALL SEE SOME IMPACT
 - THE PROBES AT THE TOP OF THE WINDOW WILL SHORT SCRUB AND MAY HAVE HIGHER CRES AS A RESULT

• BUT IT IS JUST A METROLOGY TOOL PROBLEM.... RIGHT?

• NO


- THIS IS HAPPENING ON THE TEST FLOOR IN THE WAFER PROBE SET-UP
- IT'S WHY IT IS IMPORTANT THAT THE TEST INTERFACE IS ACCURATELY REPLICATED ON THE METROLOGY TOOL

0

- CAN WE COMPENSATE FOR IT?
 EVEN IF YOU COULD WHY WOULD YOU?
- PROBE CARD MFR
 WE NEED TO MEET THE SPEC. SO WE CAN SHIP
- PROBE CARD USER
 WE NEED THE CARD BACK ON THE LINE

0

- IS IT POSSIBLE TO CHARACTERIZE THE SYSTEM DEFLECTIONS?
 - PROVIDING THE METROLOGY TOOL IS REPLICATING THE TESTER INTERFACE IT MAY BE POSSIBLE
 - BUT ITS UNLIKELY EACH TEST PLATFORM, PROBE COUNT, PROBE CARD, STIFFENER, WAFER PROBER, ... WOULD NEED TO ADDRESSED

 \bigcirc

CHALLENGES

• **RESOURCE SWITCHING**

• I HAVE A 20,000 PIN PROBE CARD SO I NEED 20,000 TEST CHANNELS ON MY METROLOGY TOOL.. RIGHT?

• NO

- IN A TYPICAL 300mm PROBE CARD APPLICATION AS MANY AS 50% OR MORE OF THE PROBES WILL BE 'BUSSED' PROBES – POWERS AND GNDS
- 6,000 TO 8,000 TEST CHANNELS IS SUFFICIENT FOR NOW
- 10 12,000 WILL BE NEEDED VERY SOON

0

0

0

- TYPICALLY THE TEST SYSTEM WILL NOT HAVE ENOUGH TEST CHANNELS TO TEST THE WHOLE WAFER IN ONE HIT
- TO OVERCOME THIS, BUT STILL ONLY DO ONE TOUCHDOWN THE PROBE CARD CAN HAVE HUNDREDS OR POTENTIALLY THOUSANDS OF SWITCHES ON IT
- SO, I HAVE A 20,000 PIN PROBE CARD WITH 800 SWITCHES
- THE SWITCHES WILL ALWAYS BE DRIVEN FROM THE SAME EDGE ON THE PROBE CARD... RIGHT?

0

0

NO

- EXPERIENCE SHOWS THAT THE SWITCHES CAN BE DRIVEN FROM MANY DIFFERENT EDGES
- ALSO WITH MORE DIE NOW BEING CONTACTED IN ONE TOUCHDOWN MORE SWITCHING OF RESOURCES IS NEEDED....

0

WHAT DOES THAT MEAN?

- TRADITIONALLY THE SWITCH ON A PROBE CARD HAS BEEN A RELAY, WITH SO MANY NOW REQUIRED REAL ESTATE AND WEIGHT ARE ISSUES
- SOLUTION USE A SOLID STATE SWITCH SUCH AS A POWER MOSFET
- A SOLID STATE SWITCH WILL NEED TO BE DRIVEN BY THE METROLOGY TOOL IN A DIFFERENT WAY TO A RELAY

0

0

CONCLUSIONS

- THERE IS NO SIMPLE ANSWER
- IF YOU WANT TO KNOW HOW THE PROBE CARD WILL BEHAVE IN THE "WAFER TEST SYSTEM" THE METROLOGY TOOL NEEDS TO REPLICATE THE SYSTEM AS CLOSELY AS POSSIBLE, MECHANICALLY AND ELECTRICALLY

REFERENCES

0

0

0

0

• PROBER STABILITY WITH LARGE PROBING ARRAY AND HIGH PINCOUNT BY GUNTHER BOEHM, FEINMETALL

SWTWS JUNE 2006

ACKNOWLEDGEMENTS

0

0

0

• LEE SIPLER, GARETH EDMONDSON AND WILSON OHL – ITC FIELD APPLICATIONS ENGINEERS

