IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> Andrei Berar NanoNexus, Inc.

Advanced Probe Card Technology Enables High Speed, High Parallelism Wafer Test

June 3-6, 2007 San Diego, CA USA

Overview

- Problem statement
- Underlying technology
- Electrical characterization
- Value Added
- Summary

Note: Measurements developed in collaboration with GigaTest Labs.

June 3-6, 2007

Problem Statement

Portable Consumer Device market is one of the fastest growing with a diverse portfolio of applications (PSRAM, SRAM, DSP, etc.) having fundamental test challenges that are *Limited by Probe Card Technology*

- High Frequency @ High Parallelism
- Cost effective parallelism
- Shrinking geometries
- Short manufacturing lead time
- Fast ramp to production

Saturate test cell channels

- < 50 µm pad pitch
- < 45 days

> 500 MHz

Relative Test Cost Speed vs. Parallelism

	Case 1	Case 2
Frequency	133	500
Touchdowns	4	16
Test cell Cost	\$3.5M	\$1.85M
Stepping time	1.2s	4.8s
Test time/TD	240s	63.8s
Parallelism	256	64
Relative test cost	2.05	1

Lower total test cost with the added benefit of speed sort at probe

June 3-6, 2007

Underlying Technology

Testing Set-up

• GTL – 5050 2-sided probe station

- Agilent 8735E Network Analyzer
- GTL 20 GHz coaxial cables
- GGB ECP18-GS/SG-750-DP-75 probes
- GGS CS-11 calibration substrate
- GGB CK-11750 SOLT calibration kit

IEEE SW Test Workshop

June 3-6, 2007

PC 1 – Electrical Characterization

PC 1 – Impedance Profile

PC 1 – Model Fit

June 3-6, 2007

PC 1 - Relative Losses

PC 2 – Electrical Characterization

PC 2 – Impedance Profile

Self Assembled nanoContactors[©]

Contactors

MEMS

- Scalability
 - Lower trace impedance allows higher frequency
- Reduced Cycle times
 - Architecture allows standard components
- **Cost Effective**
 - Simple 2-D structure, built using standard IC processing, self-assembles for 3-D contactor

Tunable & Scalable Technology

Pad Size & Pad Pitch

- Smaller scrub window
 - Tighter lithography X & Y tolerance
 - Tighter Y window w/ improved planarity because of reduced OD
 - Scalable tip size

Frequency / Switching Noise

- Short paths
 - Low inductance
 - Direct path to controlled impedance
 - Close coupled components
 - Active or passive components on back of ProbeChip

Force

Pad Material

PCB

• AI: 10 gF

Active Area / Parallelism

Larger substrates &

Tiling for whole wafer

Escape technology

scale "front end"

Increased signal count

Larger active area

process

- Cu: < Al
- Au: ~0.1gf
- ITO: ~0.1gF
- Solder: variable

June 3-6, 2007

Today's Technology

- 30,400 contactors per probe chip
- Pitch < 60 μm
- Probe chip & Z-Block impedance ~ 50 Ω
- Probe chip & Z block + Interposer impedance ~ 50 Ω
- Probe chip & Z block + Interposer + PCB impedance averages 50 Ω ± 10 %

Multi-sites (32 / 64 / 128) tested at speed (>1GHz) Tomorrow's Requirements

June 3-6, 2007

Immediate Benefits

- Cost effective Known Good-Die testing
 - Optimized multi-sites (>128) at speed (> 500 MHz)
 - Saturate channels of existing high frequency testers
- Fine pitch (< 60 μm)
- Rapid cycle time
 - Cycle time less than first silicon cycle time
 - Available for Engineering evaluation
 - Minimize inventory
- High cycle life (> 2,000,000 TDs)
- Maintenance benefits of advanced probe cards