IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Roger Sinsheimer, P.E. Xandex, Inc.

Theory and Test Methods for Board-to-Board Interposer Technologies

June 6, 2007

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
- Commercially available solutions

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
- Commercially available solutions

What good are they?

They connect things

June 6, 2007

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
- Commercially available solutions

- It's all about the probabilities
 - '80s Trillium tester used 640 spring pins any 5σ-performance interconnect solution would work

*http://www.swtest.org/swtw_library/2004proc/PDF/S01_03_Sinsheimer.pdf

- It's all about the probabilities
 - '80s Trillium tester used 640 spring pins any 5σ-performance interconnect solution would work
 - Acceptance criterion: allow one high resistance failure every 10 probe card dockings

*http://www.swtest.org/swtw_library/2004proc/PDF/S01_03_Sinsheimer.pdf

- It's all about the probabilities
 - '80s Trillium tester used 640 spring pins any 5σ-performance interconnect solution would work
 - Acceptance criterion: allow one high resistance failure every 10 probe card dockings
 - 640 pins x 10 probe card dockings = 6400 opportunities for a defect

*http://www.swtest.org/swtw_library/2004proc/PDF/S01_03_Sinsheimer.pdf

June 6, 2007

- It's all about the probabilities
 - '80s Trillium tester used 640 spring pins any 5σ-performance interconnect solution would work
 - Acceptance criterion: allow one high resistance failure every 10 probe card dockings
 - 640 pins x 10 probe card dockings = 6400 opportunities for a defect
 - 1,000,000 / 6400 = 156 DPMO or 5.1 σ or a Cpk of 1.7

*http://www.swtest.org/swtw_library/2004proc/PDF/S01_03_Sinsheimer.pdf

June 6, 2007

• It's all about the probabilities –

- '80s Trillium tester used 640 spring pins any 5σ-performance interconnect solution would work
 - Acceptance criterion: allow one high resistance failure every 10 probe card dockings
 - 640 pins x 10 probe card dockings = 6400 opportunities for a defect
 - 1,000,000 / 6400 = 156 DPMO or 5.1σ or a Cpk of 1.7
 - That's a reasonable expectation of an off-the-shelf spring pin*

*http://www.swtest.org/swtw_library/2004proc/PDF/S01_03_Sinsheimer.pdf

June 6, 2007

In case you're too young to know what a Trillium Pogo™ tower looked like

This 640-pin interface was sufficient to test the Intel '386 microprocessor generation, as well as the

early '486's

June 6, 2007

Quick statistics review

Process σ	DPMO	Cpk
1	691,462	0.333
2	308,538	0.667
3	66,807	1
4	6,210	1.33
5	233	1.67
6	3.4	2
7	0.019	2.33

So what?

 Agilent V4400 spring probe interface* had 7290 spring pins

 Will 5σ interconnect technology work?
 7290 x 0.000233 (5σ DPMO) = 1.7

 i.e. failure to fully connect about 40% of the time

*http://www.swtest.org/swtw_library/2001proc/PDF/S6_04.pdf

June 6, 2007

So what?

Agilent V4400 spring probe interface* had 7290 spring pins
Will 5σ interconnect technology work?
7290 x 0.000233 (5σ DPMO) = 1.7 - i.e. failure to fully connect about 40% of the time
One "open" every <u>20</u> probe card docks
5.85σ performance (Cpk 1.95) is required**

> *http://www.swtest.org/swtw_library/2001proc/PDF/S6_04.pdf **S01_03_Sinsheimer.pdf, loc. cit.

June 6, 2007

It only gets worse

- Agilent V5400 interface has 22.5k contacts
 - 5σ-class performance will not work
 - Allow one open every <u>40</u> probe card dockings
 - That's 1.1 DPMO, or 6.25σ, or a Cpk of 2.08

This is getting difficult

And worse

- One next-gen ATE wafer probe interface architecture requires 186,600 connections
- To be functional, contact technology must meet:

<0.134 DPMO / >6.7σ / >2.2 Cpk

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
- Commercially available solutions

So what's the problem?

 Jam two pieces of metal together, introduce a voltage difference and then the current flows, first time, every time.

Right?

A surface

A mirror smooth surface

Note: Heavy-service contact gold plating is $1.3 \ \mu m$ (50 μ -in) thick

Another surface

They meet

There's pressure ->250,000 PSI (1720 MPa)

25

With a voltage difference, there's current flow

June 6, 2007

Things are getting hot

June 6, 2007

Really hot (sintering may also be occurring)

June 6, 2007

Equilibrium is reached

June 6, 2007

Surfaces are bonded

Let's put it all together

June 6, 2007

Force required to make contact

Images on this and the next slide from: Electronic Connector Handbook by Robert Mrockzkowski

June 6, 2007

a-spots (asperities)

FIGURE 2.4 Variation in a-spot size and distribution as the load is increased from 20 to 80 g. From Ref. 5.

June 6, 2007

Again, so what's the problem?

It looks simple enough: a-spots + voltage + pressure = current?*

Anyone should be able to do that – right?

Important Note: Contact material selection very strongly influences the results achieved

*http://www.swtest.org/swtw_library/1998proc/PDF/S01_kister.PDF

June 6, 2007

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
 - Commercially available solutions

So you've got a candidate interposer, is it the right one?

- It depends:
 - What is the required, or acceptable:
 - Working range?
 - Reliability?
 - Current carrying capacity (ampacity)?
 - Bandwidth?
 - Crosstalk requirements?
 - Cost (both per unit and NRE)?
 - Complexity of technology application?
 - etc.

Working Range / Compliance

- This is a complex concept:
 - "Regardless of manufacturing / process variation, the DCR of this electrical interface must always be ≤50 mOhms."
 - There are many potential sources of misalignment / warp / out-of-plane conditions

One source of WR problems: board flatness

- IPC 6012B paragraph 3.4.3 states:
- "... The printed board shall have a maximum bow and twist of 0.75%
- Equivalent to 7.5 mils per inch (75 µm/cm).
 - This is the "tight" spec', reserved for surface mount component boards

Example Working Range vs. Force diagram

Cinch "IQ" Contact

June 6, 2007

Example Working Range vs. Force diagram

Cinch "IQ" Contact

June 6, 2007

Example Working Range vs. Force diagram

Cinch "IQ" Contact

June 6, 2007

IEEE SW Workshop

41

Working Range measurement technique

- Instron or equivalent force-vs.displacement mechanism
- Standardized 4-wire / Kelvin test boards
 - Boards should test multiple contacts, the more the better
- DC Resistance instrumentation
 Should record data automatically

Reliability

Requirement depends on nature of application

High cycles (>5000 for lifetime)
Low cycles (<50 for lifetime)

Highly parallel application?

See Contact Probability discussion

Target cycle count

 For a wafer probe interface:

 Assume three probe card changes / day (once per shift)
 365 days / year
 Three year product life

3 (shifts) x 365 (days) x 3 (years) = 3285 mate/demate cycles

Reliability test methods

Cycling

- 10,000 cycles
 - up to 75° C / 85% RH
 - Cycle time is approximately 5s
- First touch
 - 5 minutes closed, 55 minutes open
 - 75° C / 85 % RH environment
 - >65 hours / cycles

Important Note: For accurate test results the clamping fixture must not vibrate the assembly under test

June 6, 2007

Cycling

DS-HD Clamp DCR over 10k Cycles Temperature in °C and % Humidity **Resistance in Milliohms** Signal Cables Utility Cables **Ground Contacts** - -10 Number of Cycles

June 6, 2007

Probability Implications

- <1 failure in 5.76E6 opportunities
 - Equivalent to <0.17 DPMO
 - >6.6σ
 - Cpk >2.2
- Well, *sort* of
 - Resistance failure is not a Gaussian distribution problem *, so therefore the classical definition of σ doesn't <u>really</u> apply
 - But DPMO does and can be related back to σ

*http://www.swtest.org/swtw_library/2002proc/PDF/S04_01.pdf

First Touch

June 6, 2007

This is the most difficult test

 Only one technology tested using this method has cleanly passed – and many have not

One more DCR test

• Clamp 'n Hold

- Use Model:
 - left in the clamped condition for weeks, months or even years
 - extremes of temperature and/or humidity
 - interposer must work first time, every time

 No real way to accelerate this test – just have to wait it out

Other tests

Mechanical conformity to design

- Do the samples match the print?
- Under load, are the contact points in the correct location?
- Storage

 Can the interposer technology survive the anticipated storage conditions?

More tests

Contamination

- The real world's a dirty place even in a clean room
- Scrub. Either the contact technology has it – or it doesn't
 - If no scrub, must have extremely hard, sharp features to pierce surface contamination
- Make it dirty does it still work?

And more tests

- Insertion Loss
- Insulation Resistance
- Ampacity
- Inductance
- Return Loss
- Impedance
- Cross Talk

Topics

- What is the function of a board-toboard interposer?
- Contact Probability
- How is an electrical connection made?
- Testing methodologies
- Commercially available solutions

Creating a robust interposer is actually pretty difficult

- And it depends what you want/need
- 9 different species of interconnect technology from >30 companies:
 - Elastomeric discrete conductive elements
 - Elastomeric wire
 - Elastomeric particles

- Bending Beam
- Spring
- Contact-on-flex
- Random Wire Bundles
- Rocking Beam
- Spring Pins

Elastomeric – discrete conductive elements

ISCTech "ISC"
JSR "MFPCR"
Paricon "Pariposer"

Image from: "Elastomeric Contacts – Reliable enough for Production?" BiTS 2007

June 6, 2007

IEEE SW Workshop

56

Elastomeric – wire

FujiPoly "W", "FG-S" Shin-Etsu "GB-matrix", "MT-P"

Image from: "Elastomeric Contacts – Reliable enough for Production?" BiTS 2007

June 6, 2007

Elastomeric – particles

Phoenix Test Arrays "Silmat"
Shin-Etsu "RP"
Tyco "HXC125"
Various other "Zebra" technologies

Image from: "Elastomeric Contacts – Reliable enough for Production?" BiTS 2007

June 6, 2007

Bending beam

Amphenol "cLGA"

Cinch "IQ"

Gryphics "Dual Loop"

Teledyne "MicroConn"

Antares "Quatrix" Aries "Microstrip" Neoconix "PC Beam"

Note that there are others in this category (Tyco, FoxConn) vying for the low-cycle "Socket T / LGA 775" market. Huge volume, ultra-low cost (after \$\$\$\$NRE)

June 6, 2007

Spring

Ardent "RC"

HCD "SuperButton"

Che-yu Li and Company "BeCe"
HCD "SuperSpring"

June 6, 2007

IEEE SW Workshop

60

Contact-on-flex

Amphenol – InterCon Systems "C-Byte"

Giga Connections "CDP" (particle interconnect) Delphi Gold Dot

June 6, 2007

Contact-on-flex

Amphenol – InterCon Systems "C-Byte"

June 6, 2007

Random wire bundles

Cinch "CIN::APSE"

• Tecknit "Fuzzbutton"

June 6, 2007

Rocking beam

Johnstech "ROL200"

Antares "Kalypso"

• Yamaichi "Y Shaped SMT Contacts"

June 6, 2007

Spring pins

ECT Gemini 4 (0.4mm pitch)

IDI 101001 (0.5mm pitch)

• And many, many, many others

June 6, 2007

Conclusion

- Contact physics specifically and interposers generally are very complex
- Many, many variables must be considered when selecting an interposer technology
- Very careful, thorough testing must be performed to validate/verify your selection

Conclusion, cont.

Be nice to your probe card vendor

 the problem is even more
 difficult on the other side of the
 probe card

Acknowledgements

Xandex staff:

- John Hiatt (Senior QA Engineer)
- Fred Morgan (Engineering Technician)
- John Wood (Senior QA Engineer)