IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Norman J. Armendariz, PhD

Texas Instruments, Inc

A Cost-Effective Approach for Wafer Level Chip Scale Package Testing

June 3-6, 2007 San Diego, CA USA

AGENDA

- The Need
- WSP-Wafer Scale Packages
- WSP- Manufacturing Test Flow
- WSP Probe Card Technologies
- Challenges
- Comparative Summary
- Discussion

THE NEED

TI has been testing packages at final test after singulation for some time. However, the increasing use of WLCSP- wafer level chip scale package formats require cost-effective RF testing at the wafer-level or before singulation to further reduce test costs and be globally competitive.

TI-WCSP Wafer Chip Scale Packages

NanoStar™

· WCSP with eutectic SnPb Solder

NanoFree™

WCSP with Pb-Free Solder

WCSP- Redistribution Layer-RDL

100um 10kv 60x

SEM VIEW

OM VIEW RDL

Image Courtesy of the Tucson Reliability Test Lab

XS VIEW

Silicon

BUMP

UB

IEEE SW Test Workshop

June 3-6, 2007

WLCSP w/ RDL Examples

WSP Test Flow -Simplified

Current Wafer Level Probe Card Technologies

Cantilever- (Needle Probes)
Vertical- (Buckling Beam)
Membrane (Beam Probes) RF

Conventional Cantilever

Cantilever Probes

June 3-6, 2007

WSP Probe Card Tech Applicability

Both cantilever and VPC probe cards exhibited limited electrical properties as well as other physical & operational limitations and can reach 0.3mm but require a space transformer, i.e., MLC/MLO to PCB.

Membrane probe cards have been employed for FC applications that need controlled impedance for RF (radio frequency) testing and can easily reach 0.3mm, but at some cost and also with deflection/ compliance limitations.

Current WLCSP FT-final test contactor technologies, which already use similar sockets and RF pogo pins, so that a similar approach can be also used in wafer level probe card form is the preferred cost-effective approach, to avoid an expensive probe card and skip the RF FT step.

June 3-6, 2007

WSP Probe Card Integration Challenges

- **Probe to Bump Interaction (OT, Alignment)**
- Prober/tester Mechanical Interface (Components, Deflection)
- Prober/PCB/Socket/Pogo-Pin and Bump Planarity (Net Compliance, Bump Hts Vary)
- Socket/ Pogo-Pin Design (RF, Tip Shape)
- Alignment Algorithm (Auto Z-Ht Control)
- Cleaning (Media, Stepping, CRes)
- Thermal Requirements (-40 to 129C)
- Industry Maturity (Supplier Base)

Probe to Bump Interaction

Pogo-pogo tip morphology, planarity and alignment critical to control amount of over-drive. For example, a 4-pt Crown tip uniformly distributes the force (L) as compared to when only 1 of 4 tips contacting, showing more bump deformation "gouging" as a result (R).

June 3-6, 2007

WSP Probe Card Design

Wafer side (L) and "blue" insulator (R) overlaid as a template showing exposed areas that are allowed between probe card and probe card support plate for components. With a max height (Z) of 0.040" allowed for this tester interface configuration.

June 3-6, 2007

Wafer Side Component Interference

- Jumper "Blue Wires"
- Through-Hole-Mount Solder Joints
- LED Components
- PCB Barrel Vias Protruding
- Sockets and/or Pogo Pins Heights

Tester Side Component Interference

Components as located would interfere with interface tester features such as an "inner" ring (red circle) on PCB tester side (L) to Tester pogopin outer ring array on tester tower (R).

WSP Probe Card RF Pogo Pin QS

June 3-6, 2007

Leveraging FT cleaning learning's. Only the 4 tips of this 4-pt. crown pogo pin is cleaned or needs cleaning. Pogo-pin inserted into abrasive and compliant material

IEEE SW Test Workshop

June 3-6, 2007

Bump Surface Condition

Carbon-Rich Areas

AMKOR 20.0kV 9.3mm x320 BSECOMP 3/28/2007

Bump surface condition impacts pogo-pin ability to penetrate bump surface as well as, pogo-pins surface if not cleaned effectively for subsequent bump probing.

June 3-6, 2007

Pogo-Pin Condition

Cleaning media impacts Pogo-pin surface condition and subsequent electrical contact to bump, if cleaning settings not optimized.

June 3-6, 2007

Cleaning Stepping Distance

Increasing the stepping distances on cleaning media greatly improves cleaning efficiency. Although, at the expense of using more cleaning media.

June 3-6, 2007

Key Milestones for WSP Probe Card Lifetime Optimization

WSP PROBE CARD SUMMARY

Technology	PROs	CONs
	Low price	Electrically Limited
Cantilever	Short Lead-time for New Designs	Area Array limited
Needles	Repairable Contacts	F / D Linear
	Many Qualified Suppliers	Bump-Top Damage/ Reflow
	Dense Multi-site x16	Electrically Limited
VPC	F / D Profile	Initial Price and Lead Time
Buckling Wires	Hi-Temp Stability	Bump-Top Damage/ Reflow
	Many Qualified Suppliers	Probe binding
	Electrical Properties >40 GHz	High Price
Membrane	Pitch <0.3mm	F/D Limited Range
Probe Beams	Small scrub marks	Few Qualified Suppliers
		Dense multi-site < x4
	Low Price	Current Pitch Limited to 0.4mm
Socket	Electrical Properties (5GHz)	Prober Integration, cleaning, etc.
Pogo-Pins	Small Marks on Sides of Bump	0.3mm PCB supplier base
	Multi-site x8, x16	Linear F / D

Probe Technology "Gate" for WLCSP Enablement

However, the challenge for a direct 0.3mm socket to PCB connection, is that the PCB technology is not converging to what a socket can be manufactured.

In other words, sockets can be manufactured <0.3mm pitch, but conventional PCB technology "cliff" is currently 0.4mm pitch

Future Work

- Optimize Prober/ Probe Card/ Wafer Settings Planarity vs Pogo-Pin Deflection Optimization Alignment Method / Algorithm
- Optimize Cleaning Settings Media / Tip Design Stepping
- Minimize Probe Card Deflection Tester PCSP Design Mechanical Stiffeners
- Printed Circuit Board Design/ Fab 0.3mm pitch Multi-Site to x16
 Thermal Characterization Cold Temp -40 C
 - High Temp 129 C

June 3-6, 2007

Acknowledgements

- Cody Gilleland
- Doyce Ramey
- Kelly Daughtry
- Byron Gibbs