Mechanical Design of MEMS Probes for Wafer Test

Chris Folk

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Outline

- Microfabrica's EFAB[®] process
- EFAB process applied to Compliant Pins
- Design of a Compliant Pin
- EFAB process applied to a Vertical MEMS probe
- Design of Vertical MEMS probe
- Conclusions

EFAB[®] Technology Summary

- Multi-layer metal manufacturing technology for micro- to millimeter-scale devices
- Unlimited variety of complex 3-D shapes can be built
 - Designers are not constrained to standard shapes and processes
- Micron-precision features
 - Tolerances ~ 2 micron typical
- Utilizes wafer-scale batch process

to Microdevice

EFAB Process Flow

EFAB Design Flow

Advantages of EFAB Technology for Wafer Probes

Lithography-based batch manufacturing
 Precise and very uniform pin dimensions
 Arbitrary complex geometries = design flexibility

Two-metal structure for optimum performance

- Nickel-cobalt alloy Valloy[™]-120 body for best spring behavior
- Rhodium-based Edura[™]-180 tips for low wear & excellent contact resistance

Wafer Probe Products Using EFAB

Compliant Pins

 Custom-made precision individual springs and spring pins for wafer probing and fine-pitch socket applications

Vertical MEMS (VMEMS) Probes

- Cantilevered structures for memory test
- 50 µm pad pitch demonstrated
- Enables high parallelism multi-site applications

Compliant Pins

• Different probe styles (cantilever, buckling beam) and arbitrary tip shape can be designed to meet desired specifications.

Edura[™]-180 rhodium based tip

Valloy[™]- 120 proprietary nickel-cobalt alloy

How to Design a Compliant Pin

- Review prober and probe card requirements
- Determine range of probe card flexure, probe tip planarity
- Determine force and scrub. When designing pins with EFAB, force and scrub are decoupled. Therefore, good Cres is achieved by tuning these parameters.
- Usable overtravel for an individual pin is determined by:

first pin: minimize fatigue, creep, pad damage

last pin: have sufficient force and scrub to achieve good Cres

 Testing validates choices, or back to the drawing board!

Simple Cantilever

For a point load applied at the end of a beam:

Maximum deflection d=PL³/(3EI) Equation of elastic curve y=P(x³-3Lx²)/6EI I=moment of inertia

Add friction and probe neck

Stress concentrated at root of cantilever. Probe scrub coupled to stiffness of probe.

Why multi-beam cantilevers?

Short scrub, 0.75 g/mil

Long scrub, 0.5 g/mil

Long scrub, 0.75 g/mil

FEA used to determine Von Mises stress

Short scrub, 0.75 g/mil

Long scrub, 0.5 g/mil

Long scrub, 0.75 g/mil

Design Tradeoffs Impact Pin Performance

Probe Name	Short scrub, 0.75 g/mil	Long scrub, 0.5 g/mil	Long scrub, 0.75 g/mil
Computed spring constant	0.75 g/mil	0.5 g/mil	0.75 g/mil
FEA Applied force (g)	5.00	3.30	5.00
Computed overtravel (um)	167	170	168
Computed scrub motion (um)	8	16	16
Max Von Mises σ (MPa)	780	680	820
OT required for 2g force (um)	68	101	68
σ VM required for 2g force (MPa)	310	400	330

Spring Constant Matches Simulation

Cres Testing

0.75g/mil, long scrub probe 100 µm over travel 100°C 5000 cycles Al on Si wafer Without cleaning

Cres of Microfabrica Compliant Pins

Minimal Debris 5K – No Clean

Vertical MEMS (VMEMS) Probes

 Custom-designed to meet specific force, compliance, height, footprint and scrub requirements

• Extremely tight linear pad pitches are possible

Pitch & Performance Tradeoffs

MF900 – 90 µm pitch

Pitch:
True – 90 um
Burst – 80 um
Over Drive: 80 um
Spring Constant: 1.0 g/mil

True

Mechanical Testing

 Designed spring constant =1 gF/mil

Maintains
 consistent load
 >900k cycles

Conclusions

 EFAB process enables unique designs for building both Compliant Pins and VMEMS probes

- Valloy[™]-120 high performance spring material
- Edura[™]-180 excellent tip contact material

 Multi-beam cantilevers allow spring constant and scrub to be decoupled

 Well characterized materials and process enables closed loop of design -> simulation -> fabrication -> test

- Measured performance of pins closely matches FEA
- Sub-ohm Cres achieved
- Tip design yields minimal debris