IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Boyd DanielsTexas InstrumentsStu CrippenIntelTom WearISMI

ISMI Wafer Probe Council Team Activities & Industry Perspectives

June 8-11, 2008 San Diego, CA USA

Overview

- Probe Council Introduction
- Benchmarking
- Supplier Assessments
- Technical Activities
- Summary

June 8 to 11, 2008

What is ISMI?

- What we do: Drive productivity solutions for current and future challenges in our members' factories, enabling best in class productivity levels.
- How we do it: Providing platforms for <u>collaboration</u> among our members and directing <u>development</u> activities in key areas
 - ISMI = Value to Members
 - Productivity
 - Cost reduction
 - ISMI is "Member driven"
 - Agenda and priorities set by members
 - Collaboration is key to our mutual success

June 8 to 11, 2008

ISMI Membership

16 Global Semiconductor Companies

Accelerating Manufacturing Productivity

June 8 to 11, 2008

ISMI Councils Portfolio

June 8 to 11, 2008

ISMI Probe Council

Charter: Improve Member Company value in Wafer Probing

methods and technology

Three Council face-to-face meetings per year

- US Member Company (MC) site
- Asia or European MC location
- At Semiconductor Wafer Test
 Workshop (San Diego in June)

Benefits of Participation

- Highly-rated annual Probe Metrics Survey
- Fast information gathering through *mini-surveys*
- Forum for technical interaction on topics of common interest
- Best Practice Sharing
- Networking opportunities

June 8 to 11, 2008

Membership – Probe Council

June 8 to

AMD	J Kober
HP	S Rubart
IBM	S Duda / P Diesing
Infineon	O Nagler / S Hoenack / M Horn
Intel	W Crippen / S Brooks
Micron	J McBride / B Crump
National Semiconductor	KL Ang
Panasonic	K Hirae
Qimonda	F Pietzschmann
Spansion	A Romriell
Texas Instruments	B Daniels (Chair)
TSMC	

Metric Benchmark Surveys

Probe Metrics Survey

- Completed every year since 2000
- Data-Intensive Survey
 - 37 different metrics tracked
 - Engineering/Technical
 - Operational
 - Quality
- Inputs grouped and output summarized by
 - Bump vs Pad Technologies
 - Product Family (CPU, Logic, ASIC, RF, Memory)
- Provides framework for ITRS projections
- Generates "Best-in-Class" Sharing in Council Meetings

June 8 to 11, 2008

Annual Probe Metrics Survey Results

Excellent reference of how companies' capabilities compare

June 8 to 11, 2008

Trends Based on Members Capabilities

June 8 to 11, 2008

Trends Based on Members Capabilities

Maximum Reported Probe Count (Multi)

June 8 to 11, 2008

Supplier Assessment Surveys

- Probe Card Supplier Assessment
 - Done annually since 2004
 - In 2008
 - Collected input from 11 Member Companies
 - Ten Suppliers will receive results (minimum 3 responses)
 - Engaged with Probe Council for 1:1 Feedback
 - Performance Areas: Quality, Support, R&D, Value
- Benefits
 - Provides framework for internal council discussions
 - Specific feedback to suppliers from key customers
 - NOT a competitive ranking exercise
 - Provides insight to suppliers on what they do well
 - Highlights areas for improvement
 - Tracks performance year-to-year

June 8 to 11, 2008

Probe Card Supplier Assessment Snapshot of Output

2007 Results – Major Performance Categories

		_	_	_	_	_	_	_		-	-			
		Α	в	С	D	E	F	G	н	I	J	AVE	MIN	MAX
1.0 Quality														
1.1 Meets Specs		6.80	6.50	7.20	6.70	6.42	7.63	7.00	7.70	7.67	8.08	7.17	6.42	8.08
1.2 Works first try		5.92	6.50	7.32	7.37	6.54	7.63	6.50	7.30	7.67	7.50	7.02	5.92	7.67
1.3 No recurring pro	oblems	5.76	6.00	7.20	6.70	5.84	7.50	5.00	7.30	7.67	6.67	6.56	5.00	7.67
1.4 Robust in produc	ction	5.24	6.50	6.44	7.20	6.14	7.88	5.75	8.05	7.33	7.25	6.78	5.24	8.05
1.5 Change control		6.20	6.17	7.00	7.80	6.67	7.63	6.50	6.70	7.67	7.42	6.97	6.17	7.80
1.6 Quality system i	in place	6.16	6.17	6.80	7.47	6.16	7.13	6.25	7.05	7.67	6.92	6.78	6.16	7.67
2.0 Support & Services														
2.1 Global manufact	turing	3.64	6.80	5.05	6.37	7.20	5.75	6.33	5.85	7.33	3.92	5.82	3.64	7.33
2.2 Lead time new c	cards	4.40	6.67	5.98	7.00	6.79	7.50	6.25	5.40	7.67	6.25	6.39	4.40	7.67
2.3 Response at bri	ngup	6.84	6.00	6.50	7.20	6.40	8.00	6.00	6.75	7.67	6.50	 6.79	6.00	8.00
2.4 Leadtime repeat	t builds	5.12	6.33	6.68	6.83	6.98	8.00	6.50	6.25	7.67	6.25	 6.66	5.12	8.00
2.5 Line support & v	warranty	6.16	6.17	5.90	6.73	7.00	7.63	5.75	6.90	8.00	7.00	6.72	5.75	8.00
2.6 Global repair		3.88	6.67	4.80	5.80	6.88	6.38	5.75	7.15	7.67	4.67	 5.96	3.88	7.67
2.7 Fast repair		4.64	5.67	5.78	7.13	6.43	6.63	6.25	5.45	8.00	7.08	6.31	4.64	8.00
2.8 Repairable desi	gns	3.08	5.83	7.04	7.47	6.85	7.50	6.25	5.10	7.67	4.33	6.11	3.08	7.67
3.0 R & D														
3.1 Roadmap		5.80	5.17	6.60	5.73	5.85	6.63	5.50	5.90	7.33	6.58	6.11	5.17	7.33
3.2 Meets R&D com	nmitments	6.60	5.33	6.85	4.92	5.60	6.50	5.33	5.73	7.67	6.78	 6.13	4.92	7.67
3.3 Meets customer	r roadmap	5.65	5.50	6.90	6.08	5.90	5.88	5.67	6.47	7.33	6.89	 6.23	5.50	7.33
3.4 Aligned w/ ITRS	rdmp	5.87	5.17	5.80	5.25	6.00	6.75	5.67	6.88	7.67	6.83	 6.19	5.17	7.67
3.5 Strong engineer	ring team	7.70	6.00	6.92	6.33	6.31	6.88	5.00	7.90	8.33	6.83	6.82	5.00	8.33
4.0 PRICE / CC	DST													
4.1 Competitive pric	ces	3.84	6.17	5.88	6.20	6.44	7.75	7.25	4.30	7.00	5.83	6.07	3.84	7.75
4.2 Prices continual	lly improve	3.32	5.67	5.52	6.08	6.17	6.75	6.75	4.20	7.00	5.50	5.70	3.32	7.00
4.3 Active cost redu	uction	3.68	5.67	5.28	4.47	5.60	6.00	5.50	4.00	7.67	5.00	5.29	3.68	7.67
4.4 Shares cost det	tails	3.52	4.00	4.52	5.07	6.04	4.88	6.50	3.40	7.00	5.33	5.03	3.40	7.00
4.5 Global and vol pr	ricing	4.96	6.20	6.30	6.08	6.04	5.63	6.00	5.35	7.33	5.83	5.97	4.96	7.33

June 8 to 11, 2008

Supplier Assessment Surveys

New Supplier Engagement Activities

- Prober Supplier Assessment
 - Done for the first time in 2007
 - All Major Suppliers will receive feedback
- 2009 Plan
 - Metrology Supplier Assessment
 - Survey tool under development

June 8 to 11, 2008

Council Technical Activities

- Successful past efforts include
 - RFID User Guideline
 - Current Carrying Capability Measurement
 - Probe Card Cost of Ownership Model
 - In Public Domain since 2007

• Future Activities

- Greater focus on Industry Guidelines, Methodologies, and White Papers
- Consensus-based technology evaluations
- Greater Council participation by ISMI Japanese members

June 8 to 11, 2008

Probe Council Technical Direction *Future Activities*

INDUSTRY INFLUENCE	SUPPLIER IMPROVEMENT	TECHNICAL INNOVATIONS
Probe Mechanical Lifetime Assessment Standard	Standard Test Vehicle for Probe Card Evaluation/Qualification	Performance Capability Test Vehicle for Probe Cards
Impact of Pad/Bump metallurgy on probing quality	Supplier Assessment Methodology Guideline	Influence of tip geometry on probe quality attributes
Fine-Pitch Vertical Probe Technology Capability Assessment	Standard User Requirements Guideline	
Full-Contact Wafer Probing Capability Assessment		

ISMI Wafer Probe Council

8000 Mindering

Thank You!

Boyd Daniels (Chair) ebd@ti.com

Tom Wear (ISMI) tom.wear@ismi.sematech.org

June 8 to 11, 2008

Networking

Cooperation

ISMI Councils