IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Rod Doe

Challenges of 300mm probe

RUDOLPH TECHNOLOGIES

Overview of Presentation

- Problem statement / Goals of study
- Review the design of experiments (DOE)
- Review probe card data collected on a PCA
- Review results of empirical deflection study
- Summary

Problem Statement: Test Cell Deflection Is Unknown

 Programmed prober overdrive is not equal to actual probe card overdrive

• Actual overdrive of the probe card is a function of ...

- The force produced by the probe card (# of pins)
- Stiffness of the system

• Z drive encoders compensate for subset of deflection.

Goal is to produce consistent robust scrubs at any load

DOE: Analysis of Deflection

- 1. Measure 300mm Probe Cards on a Probe Card Analyzer (PWX)
 - Measure unloaded planarity
 - Measure loaded planarity
 - Measure scrub distance
 - Analysis of deflection
- 2. Conduct Clay Study of Deflection Analysis in a Test Cell
 - Experiment setup in test cell
 - Directly measure deflection (clay study method)
 - Analysis of deflection

Probe Card Properties

μm	 -100000	-50000	0 	50000	100000	150000	200000
•-							
2000							
1-1-1							
1-1-1							
100							
					Γ	64020 μm ,	, 27777 µm

300 mm : One touch probe card
~ 6000 probes

Probe Card Analyzer Data Overview

Expectations: No Load Planarity vs. Loaded Planarity

No load low probes = Loaded low probes

Higher probes separate because of load

PCA Data: Probe Card 1: Planarity - No Load

3D Visualization	3D Visualization
Z Axis : Planarity 💌 🌐 🗐 🕲 🌚 🐨 🍪 🕥 🐼 😒 😽 😴	Z Axis : Planarity 🔽 🜐 🖽 🕥 🚱 🔁 😵 🕥 💽 ×🕗 🖋
Pitch = 0.000806 * [14,1] Min X = 116685 µm Y Reference (µm) Min X = 116685 µm Min X = 116685 µm Min X = 116885 µm Min X = 116885 µm Min X = 116885 µm Min X = 10000000 * [10,1] Min X = 116885 µm Min X = 10000000 * [10,1] Min X = 116885 µm Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 1000000 * [10,1] Min X = 10000000 * [10,1] Min X = 1000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 10000000 * [10,1] Min X = 100000000 * [10,1] Min X = 100000000 * [10,1] Min X = 100000000 * [10,1] Min X = 100000000 * [10,1] Min X = 1000000000 * [10,1] Min X = 1000000000 * [10,1] Min X = 10000000000 * [10,1] Min X = 1000000000 * [10,1] Min X = 10000000000 * [10,1] Min X = 10000000000 * [10,1] Min X = 10000000000 * [10,1] Min X = 10000000000 * [10,1] Min X = 10000000000000000000000000000000000	Pitch = 0.000806 ° (14.1 μr) Roll = 0.000921 ° (16.1 μr) Min X = -116685 μm Max X = 167330 μm Y Reference (μm) Min Y = -287694 μm Max Y = 0 μm Min Z = -42 μm Max Z = 42 μm Min Z = -42 μm Max Z = 42 μm
.15.0 μm X = 0°, Y = 0°, Z = 0°	-15.0 μm X = -39°, Y = 0°, Z = -13°

Planarity of probes free hanging (No Load) +/- 15 microns

Probe Card 1: Planarity

Loaded Planarity

Deflection

- Deflection of probe card from no overtravel until all probes are touching ~ 4 microns
- Low probes showing no deflection
- High probes drift up as the probe card is overtraveled

Probe Card 1: Deflection Graph

- Deflection of probe card ~ 3 microns (When all probes are touching)
- Low probes showing no deflection
- High probes drift up as the probe card is overtraveled
- Extrapolate to 80 microns of OT , actual = 62 microns

PCA Data – Probe Card 2: No Load

Planarity of probes free hanging (No Load) +/- 15 microns

Probe Card 2 - Loaded

Loaded Planarity

Deflection

- Deflection of probe card from no overtravel until all probes are touching ~ 5 microns
- Low probes no deflection
- High probes drift up as the probe card is overtraveled

Probe Card 2: Deflection Graph

 Deflection of probe card from no overtravel until all probes are touching ~ 5 microns

 Low probes show no deflection / High probes drift up as the probe card is overtraveled

• Extrapolate to 80 microns, actual = ~ 59 microns of overtravel

PCA: Probe Card 1 - Scrub Length

Loaded Planarity

Scrub Length

- Low probes scrub the farthest
- High probes scrub the least

Probe Card 2 – Scrub Length

Loaded Planarity

Scrub Length

- Low probes scrub the farthest
- High probes scrub the least

Probe Card 3 Multiple OT -Scrub Lengths produced

 Probes in the center were highest but probes actually produce an even distribution of scrub lengths.

PCA Data – Card Bowing

Card does not show any significant change in relative scrub length as a function of overtravel (No bowing of the card)

Probe Card Summary

Loaded Planarity vs. Unloaded Planarity

- Overall planarity range ~15u
- Both cards showed similar planarity signatures between unloaded and loaded states
- Similar deflection rates for both cards (3-4 microns)

Scrub length at multiple overtravel levels

- Scrub lengths mirrored planarity signatures
- Scrub lengths showed no significant signature change relative to overtravel load (No bowing of card)

Clay method for measuring actual overdrive

- Place multiple pieces of clay on the probe card.
- Have prober overdrive to multiple overdrive positions.
- Measure the height of the clay balls after each overdrive.
- The clay ball compression shows the actual overtravel of probe card vs. programmed overdrive.

Probe Card: Clay Balls

Place multiple clay balls on the probe card

Wafer Data: Clay Study

Wafer Data: Clay Study

Deflection amounts similar to PCA deflections

Summary

- Two models of deflection analysis presented
 - Probe Card Analyzer
 - Clay model analysis
- Both models showed very similar deflection signatures
- Loaded Planarity deflection extrapolation model on Probe Card Analyzer shows strong correlation to standardized Clay model deflection analysis
- Use of Loaded Planarity deflection analysis model enables test cell optimization without resultant spent wafers

