IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Jim Brandes Everett Charles Technologies

High-Performance Contactors for Wafer-Scale Test (WST)

Agenda

- Traditional Test Approach Probe and Final (Package) Test
- New Method Final Test on Wafer – Economic Advantages – Understanding Wafer-Scale Test
 Wafer-Scale Test Vs. Wafer Probe – Mechanical Challenges
 - -Electrical Challenges

Agenda

- New-Generation Spring Probes for WST
 Electrical and Mechanical Characteristics
- New Generation Probes Compared to Existing Probe Technologies for WST
 - Traditional Spring Pin
 - Cantilever Beam
 - Buckling Beam
 - Membrane

Traditional Test Approach

Wafer Probe / Final Test

- Wafer Probe
 - Cannot be a complete and thorough test
 - Confirms device functionality
- Final (Package) Test
 - Performed at device specification limits
 - Confirms performance with packaging effects included

June 8 to 11, 2008

New Method – Final Test on Wafer Wafer-Scale Test (WST)

IEEE SW T

- Packaging at wafer level allows testing at wafer level
- Redistribution layer with ball or bump attach
- Ready to be diced, boxed and shipped after test

New Method – Final Test on Wafer

Economic Advantages

- Testing traditionally >10% of cost of device manufacture
- Testing once rather than twice has potential to halve this
- Improved possibilities of parallelism
- Shorter time to market

June 8 to 11, 2008

Understanding Wafer-Scale Test

Wafer-Scale Test is mechanically similar to probe test

Wafer-Scale Test must be identical electrically to package test

June 8 to 11, 2008

WST vs. Wafer probe WST Mechanically Similar to Wafer Probe

• Devices still part of wafer

 Wafer prober used to manipulate devices for test

June 8 to 11, 2008

WST vs. Wafer probe

Wafer-Scale Test /S Final Test

- DC tests
 - High current
 - Accurate force, measure values
- Functional tests
 - Drive inputs at thresholds
 - Sense outputs at limits & under loads
 - Power supplies at minimum / maximum

June 8 to 11, 2008

WST vs. Wafer probe

Wafer-Scale Test /S Final Test

Timing / AC tests

 Full clock speed
 Worst-case input timing combinations
 Confirming input-to-output timing
 RF tests (gain, SNR, THD, etc.)

 Requires clean power delivery

 Low inductance

June 8 to 11, 2008

WST vs. Wafer Probe

WST Challenges - Mechanical

- Fine-pitch requirements
 - Currently at 0.4 and 0.3 mm pitch
 - 0.25 mm and smaller soon
- Vertical Contact
 - Support for area arrays
 - Support for high parallelism
- Adequate force requirements
 - More force required than wafer probe
 - 20 g 30 g to pierce solder oxide and debris

June 8 to 11, 2008

WST vs. Wafer Probe

WST Challenges - Mechanical

- Compliance
 - Bumped wafers not as coplanar as wafer pads
- Cleaning
 - Abrasive scrub for cantilever probe not appropriate
 - New cleaning techniques required
- Stack height
 - Probers not capable of plunging to board
 - Additional height diminishes performance

June 8 to 11, 2008

WST vs. Wafer Probe

WST Challenges - Electrical

- High current requirements
- Low, consistent resistance
- Low inductance requirements
- High bandwidth requirements
- Everything that is required for final test

June 8 to 11, 2008

New-Generation Spring Pins Meet All the Requirements New Architecture Spring Probes -Electrical performance -Mechanical performance -Cost-effective manufacturing method

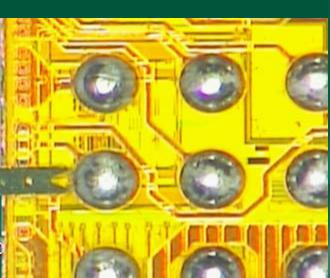
June 8 to 11, 2008

New Architecture

-Single-ended

- Two flat pieces and spring
- No barrel
- All external surfaces allow excellent plating quality and consistency
- Scalable architecture suitable for 0.2 mm and below

High Electrical Performance -Short, wide signal paths -High bandwidth -Low, consistent resistance -High Conductance -Low inductance



High Mechanical Performance –Short probe length –Good force –High compliance –Long life

June 8 to 11, 2008

IEEE SW Test Wo

Cost-Effective Probe

- -Fewer probe parts
- -Lower cost than turned parts
- Better plating improves manufacturing yield
- Easier assembly
- Individually
 Replaceable

Sample Specifications: RF / Electrical

	0.4 mm	0.3 mm
Bandwidth	25.8 GHz @ -1 dB*	12.4 GHz @ -1 dB*
Loop Inductance	0.91 nH*	1.12 nH*
Continuous Current	1.2 A @ 20° C rise	TBD
	1.7 A @ 40° C rise	TBD
Current @ 1% duty cycle	7.7 A @ 20° C rise	TBD
* Native pitch, GSG, Vespel dielectric		

June 8 to 11, 2008

New-Architecture Probe Sample Specifications: Mechanical

Test Height Compliance **DUT-Side Compliance Force @ Test Height Typical Life** Finish (Plating)

0.4 mm 2.40 mm (0.094") 0.64 mm (0.025") 0.5 mm (0.020") **30 g** 500 k cycles* Hard Gold, others pending

* Lab tests

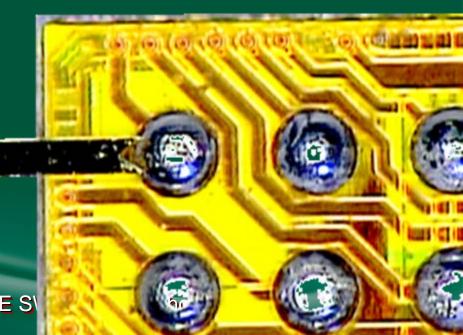
0.5 mm 2.73 mm (0.106") 0.64 mm (0.025") 0.5 mm (0.020") **25 g** 500 k cycles*

June 8 to 11, 2008

Advantages over traditional spring probes for WST:

- Lower inductance
- Higher bandwidth
- Higher Force

Traditional spring probes for WST are about equal:


- Fine Pitch capability
- Vertical Architecture
- Conductance
- Compliance
- Repairable in the field
- Price

June 8 to 11, 2008

New-Architecture Probe Advantages over traditional cantilever-beam probes for WST:

- Vertical architecture for area arrays and higher parallelism
- Greater compliance
- Higher currents
- Lower inductance
- Higher bandwidth
- Higher force
- Field repairable / rebuildable without special tools
 June 8 to 11, 2008

New-Architecture Probe Advantages of traditional cantilever-beam probes for WST: Fine pitch capability **About Equal:** • Price

June 8 to 11, 2008

New-Architecture Probe

Advantages over buckling-beam probes for WST:

- Greater compliance
- Higher currents
- Lower inductance
- Higher bandwidth
- Higher force
 - Lower price
 - Field repairable / rebuildable without special tools

June 8 to 11, 2008

Equal:

IEEE SW Test Workshop

New-Architecture Probe

Advantages of buckling-beam

probes for WST:

Finer pitch capability

Vertical architecture

Advantages over membrane probes for WST:

- Greater compliance
- Higher currents
- Lower inductance
- Lower price / shorter leadtime
- Field repairable / rebuildable without special tools

June 8 to 11, 2008

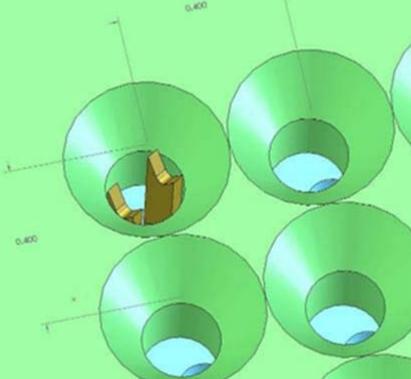
Advantages of membrane probes for WST:

- Fine pitch capability
- Close position of decoupling
- About equal:
- Bandwidth
- Vertical architecture

June 8 to 11, 2008

New-Architecture Probe Initiating Beta Sites Primary considerations •First-pass yield Final yield •Probe life Overall cost of test Secondary considerations Cleaning frequency

•Ease of maintenance / use


Future

IEEE

Highly scalable architecture
Probes designed for:

0.2 mm pitch
Kelvin for
0.4 mm Arrays

0.4 mm pitch Kelvin probe tips shown, viewed through floating alignment plate

June 8 to 11, 2008

Summary

New-technology probes are designed to be used in contactors to address:

- Mechanical requirements of WST
- Electrical requirements of WST
- Demand for reduced cost of test

Thank You Questions?

June 8 to 11, 2008