IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Dr. Alan Ferguson Oxford Lasers

Comparison of Drilling Rates and Tolerances of Laser-Drilled holes in Silicon Nitride and Polyimide Vertical Probe Cards

June 8-11, 2008 San Diego, CA USA

- Introduction to laser drilling
- Laser drilling examples
- Comparison of laser drilling of SiN and polyimide
- Comparison of laser drilling with mechanical drilling
- Summary

June 8 to 11, 2008

Introduction to Laser Drilling for Vertical Probe Cards

- Laser beam diameter at focus typically 0.2 mil (5 μ m)
 - this is the diameter of the "laser drill-bit"
- Typical required hole diameters are 1.6 mil (40μm) to 4 mil (100μm)

- Latest Systems rotate the beam around the hole center
 this gives excellent hole circularity
- Laser beam evaporates the material
 so the laser does not care if the material is hard or soft etc

June 8 to 11, 2008

Introduction to Laser Drilling for Vertical Probe Cards

- Laser drilling machine looks and behaves like a modern wafer fab tool
- Latest developments include full software control of the process and hole geometry
- Flexible tool
 - can drill ceramics, polymers, silicon and other materials
- Future proof
 - hole diameters down to 0.8mil (20µm)
 - round holes, rectangular holes & other shapes

June 8 to 11, 2008

Silicon Nitride and Polyimide

SiN Polyimide

Temperature

1900 °C400 °Csublimesglassifies

Ablation threshold ~2.5 J/cm² ~0.05 J/cm²

- means that it needs more laser power to ablate SiN
- expect process speed of SiN to be slower
- SiN sublimation means that it ablates very cleanly, no melt etc
- too much laser power on polyimide can cause charring

June 8 to 11, 2008

Laser Drilling Examples

2 mil dia hole, alumina

4 mil diameter hole, polyimide

2.4 mil rectangular, SiN

2 mil dia hole, polyimide 3.2 mil dia hole, polyimide

oolyimide 3.2 mil dia

3.2 mil dia hole, SiN

June 8 to 11, 2008

Laser Drilling - Process Rate

June 8 to 11, 2008

Laser Drilling Diameter Accuracy

Laser Drilling Position Accuracy

June 8 to 11, 2008

Probe Card Industry Challenge

From Intel presentation at SWTW 2007

Technical challenge

to meet next generation of probe cards

Cost challenge

 to reduce probe card costs in line with other manufacturing costs

June 8 to 11, 2008

June 3-6, 2007

IEEE SW Test Workshop

3

Probe Card Industry Challenge

Why we needed to find new alternative technologies

- Current technologies bound to high cost
 - Manufacturing process is Labor intensive
 - Manufacturing Process highly complex
 - Cost scales with probe count
 - Limits the ability to extend to parallel sort

Bottom line: Probe card cost is the key limiter to Intel's wafer test process cost reduction capability.

June 3-6, 2007

IEEE SW Test Workshop

1

June 8 to 11, 2008

Laser & Mechanical Investment Costs per Year

Mechanical versus Laser Drilling

	Laser	Mechanical
Variation on Diameter	+/- 0.1 mil	+/- 0.1 mil
Process Complexity	Moderate	Moderate
Inherent Limitations	None	Drill Bit wear/breakage Drill Bit wander
Yield	>95%	70% - 95%
Drill time per hole	1 – 3 secs	4 – 15 secs
Time for 5000 holes	1.5 – 4.5 hours	6 – 21 hours

Laser & Mechanical Drilling Effect of Hole Number on Yield

- Demonstrates that drilling process must be robust
- Mechanical drilling
 - yield is a strong function of number of holes
 - yield lies between the blue and orange curves
- Laser drilling
 - yield is a weaker function of number of holes
 - yield lies between the orange and yellow curves.

Calculation based on single hole success rates of 99.9999%, 99.999%, 99.99%, 99.99%, 99.9%

June 8 to 11, 2008

Laser & Mechanical Drilling Costs per hole - Silicon Nitride

Assumptions	Μ	lech	Laser
5000 hrs/yr 3 mil dia hole 10000 hole plate	Holes/hr	360	1200
	Yield	70%	95%
	Cost/hr	36	55
	Cost/1000 holes	144	48

June 8 to 11, 2008

Laser & Mechanical Drilling Costs per hole - Polyimide

Assumptions		Mech	Laser
5000 hrs/yr 4 mil dia hole 10000 hole plate	Holes/hr	600	2060
	Yield	70%	95%
	Cost/hr	36	55
	Cost/1000 hole	s 87	28

June 8 to 11, 2008

Laser versus Mechanical Drilling Cost Trade - Offs

Graph of cost advantage

Conclusions

• Drilling Rates and Tolerances for Silicon Nitride and Polyimide have been reported

 Comparison between Mechanical and Laser drilling demonstrates the area where each is most cost competitive

• Laser Drilling offers the capability to meet some of the challenges laid down by Probe Card customers

June 8 to 11, 2008