IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Probe Card Cleaning Media Survey

Eric Hill, Josh Smith :: June 10, 2008

Special Thanks To:

June 10, 2008

Outline

- Introduction
- Materials and Methods
- Results
- Conclusions
- Acknowledgments

Why Optimize Online Cleaning?

- Probing is a dirty business
- Cleaning probe tips keeps device yield up
 - Yield is money
- Time spent cleaning is lost test cell utilization
 - Test cell utilization is money
- Abrasive cleaning wears out probes
 - Replacing probe cards costs money

Optimizing cleaning saves money!

SWTW-2007 Cleaning Tutorial Session

Selection Matrix "Eye Chart"

	Morphology		Mech.	Cantilevered Probe Tip Wear		Debris Temp		Cantilevered		Vertical - Cobra			Advanced		
Description	Surface	X-Sect.	Perform	Length	Diam.	Shape	Collect	Range	Flat	Radius	Semi	Flat	Wedge	Peint	Contacts
Rigid Substrate					increase	flat	N	-50C to 125C	Lapping			Contact Supplier			Contact Suppler
Poluester Backed Lapping Film					increase	flat	N	-50C to 125C	Lapping						
Langing Film on VIIII Fearm					increase	fl-st	N	2	Lognica						Contact
Laws Call Faam					obosoon	nointed	N	-	Capping			Contact			Contact
Large Cell Poarn					no	no		-301 10 1301	Debris	Debris	Debris	Soppler			Contect
Unfilled Polymer					change	change	Ŷ	-50C to 200C	Only	Only	Only				Supplier
Filled Polymer					no change	little change	Y	-50C to 200C	Debris Polish	Debris Polish	Debris Polish				Contact Supplier
Abrasive Laver Small Cell Foam					increase	flat	Ν	-??C to 130C							Contact Suppler
Polymer Layer on Langing Film					increase	flat	Y	-50C to 125C	Debris Numer						Contact

- Optimal on-line cleaning materials selection during wafer sort is a critical element of integrated chip manufacturing process
- Industry is requesting probe technology + cleaning solution
- Economic benefits of "educated" cleaning are best realized with high value devices and probe card technologies
 - Throughput and uptime improvements
 - Increased wafer yields
 - Extended probe card service life and performance

June 3-6, 2007

IEEE SW Test Workshop

48

Broz, et. al., SWTW-2007

June 10, 2008

Cleaning Media Survey

- Wide variety of media available
- Previous surveys not targeted at Pyramid Probes
- Define consistent evaluation criteria
 - Mechanical criteria in Phase 1
 - Resistance testing in Phase 2
- Test commercially available abrasive media
 - 20 media
 - 4 suppliers
 - Rigid substrates and unfilled elastomers not considered
- Evaluate and rate media suitability for use with Pyramid Probes
- Search for the "ideal" medium

What is the "Ideal" Cleaning Medium?

- Removes adherent contamination from tips
- Non existent Tip Wear
- No particles generated by cleaning media
- No residue left on tips
- Media captures particles from membrane
- Cleaning action insensitive to overdrive

R. Marcelis, SWTW-2007

June 10, 2008

Measurement Summary (per cleaning medium)

Measure Insertion/Extraction force

SEM inspection

http://www.accretech.com

http://www.fei.com

June 10, 2008

Insertion/Extraction Force

Insertion Force Measurement Setup

Typical insertion/extraction Curve

June 10, 2008

Accelerated Wear Test

- New Pyramid Probe card
- Cleaning touchdowns only
 - Vertical motion only
 - 100 microns cleaning overdrive
 - 50 micron step between touchdowns
 - No wafer touchdowns
- Touchdown intervals of:
 - 1k, 2k, 5k, 10k, 20k, 20k touchdowns (58k total)
- After each interval:
 - Measure Tip Height
 - Optical inspection
- SEM inspection after 58k touchdowns
 - Assess contamination

http://www.engin.umich.edu/

Pyramid Probe Card at a Glance

New probe card used for each medium's **Accelerated Wear Test**

June 10, 2008

IEEE SW Test Workshop

HV Spot

WD acuum 15.0 kV 4.5 10.03 mm 0.18 mm

VacMode

Tip Height Measurement

- Stylus profilometer
- > 3D scan of region around tip
 - 5 scans per tip
 - 6 micron spacing between scans
- Record Total Indicated Runout (TIR) relative to local membrane surface
- Measurement accuracy of 0.5 microns or better
- Repeated for each tip

June 10, 2008

Quantifying contamination generated by cleaning process (C_{debris})

- Image tips after testing in SEM
- Qualitatively rank contamination
 - 1 = least, 10 = most
 - $R_{particle}$ = relative size of particles (1-10)
 - F_{memb} = frequency of debris on membrane (1-10)
 - F_{tip} = frequency of residue on tip (1-10)
- Weighted Debris Function

 C_{debris} = [0.7 ($R_{particle}$) + 0.2 (F_{memb}) + 0.1 (F_{tip})]

Full Results Summary

Manufacturer	Product	Туре	C _{debris}	Single Tip Spring Rate (g/µm)	Wear Rate (nm/1k TDs)	Note
Allied High Tech Products	1 micron Type B	Lapping Film	10.0	1.09	305	Damaged Tips
Allied High Tech Products	6 micron Type B	Lapping Film	10.0	1.47	299	Damaged Tips
Allied High Tech Products	3 micron Type B	Lapping Film	10.0	1.45	128	Damaged Tips
MIPOX	GC6000-PF3	Soft-backed Lapping Film	6.0	0.21	66.5	Uneven Wear
ITS	Probe Lap 5084	Lapping Film	4.9	1.23	54.6	
3M	3M T-CL	Soft-backed Lapping Film	5.6	0.79	39.8	Uneven Wear
Allied High Tech Products	3 micron, acetone wash	Lapping Film	3.3	2.03	34.2	
Allied High Tech Products	3 micron	Lapping Film	6.9	2.16	29.9	
MIPOX	WA8000-SWE	Abrasive Coated Foam	3.6	0.19	28.8	
MIPOX	WA6000-SWE	Abrasive Coated Foam	2.7	0.30	23.6	
3M	266X – 1 micron	Lapping Film	3.7	2.79	15.5	
Allied High Tech Products	6 micron	Lapping Film	10.0	2.26	14.9	Extreme Debris
MIPOX	GC8000-PF3	Soft-backed Lapping Film	7.3	0.14	14.3	
3M	265X – 1 micron	Lapping Film	3.7	1.21	11.7	
MIPOX	1 micron	Lapping Film	6.9	2.27	2.6	
ITS	Probe Polish 150	Abrasive Loaded Elastomer	1.0	0.04	2.6	
ITS	Probe Polish 70	Abrasive Loaded Elastomer	2.8	0.01	1.5	
MIPOX	Si10000-PF3	Soft-backed Lapping Film	7.1	0.03	1.3	
ITS	Probe Polish 99/I	Abrasive Loaded Elastomer	1.0	0.01	0.6	
MIPOX	Si10000-SWE	Abrasive Coated Foam	2.8	0.18	0.5	

June 10, 2008

Wear Results Summary

Generally Speaking:

- > Apparent relationship between tip wear and particle generation
- > Data from similar media type grouped together

Lapping Films

Soft-Backed Lapping Films

Filled Elastomers

Abrasive Coated Foams

So, how did each media type perform?

June 10, 2008

Lapping Films

- Relatively high stiffness (1-3 g/um)
 - Low tip penetration into media
 - Particles not captured
- Even tip wear over probe tips
- Abrasion rate is:
 - Related to grit size, grit density, and grit exposure
 - Apparently not related to abrasive material
 - Insensitive to cleaning overdrive
- Wide range of particle generation
 - Generally suitable for all applications

Tip Wear vs. Position at 58k TDs: even wear < 2um

Exception: Lapping Films with Ceramic Sphere Encased Abrasive

Not suitable for Pyramid Probe card cleaning!

Courtesy of Allied High Tech Products, Inc.

June 10, 2008

Soft-Backed Lapping Films

- Low to Medium stiffness (0.03- 0.8 g/um)
 - Moderate tip penetration into media
- Uneven tip wear
 - Hard Abrasives wear tips unevenly
 - Soft (SiO₂) abrasive OK, but probing generates lots of debris
- Not Recommended for use with Pyramid Probe cards

June 10, 2008

Soft-Backed Lapping Films: Corner-Edge Wear Mechanism (Membrane Probes)

- Two relatively stiff films, supported by soft layers
- Force is concentrated on end and corners of pattern

June 10, 2008

Soft-Backed Lapping Films: Corner-Edge Wear Mechanism (Membrane Probes)

- Two relatively stiff films, supported by soft layers
- Force is concentrated on end and corners of pattern

Abrasive Filled Elastomers

Low Stiffness (0.01 to 0.05 g/um)

- High tip penetration into media
- Most of the overdrive applied deforms the media
- Effective overdrive limited by height of tip
- Membrane always contacts media
- Very low tip wear
- Slight tip radiusing
 - More apparent with higher abrasive loading
- Safe for all uses
- Best for long probe tip life

June 10, 2008

IEEE SW Test Workshop

New Tip

After 58k TDs

Abrasive Coated Foams

Medium Stiffness (0.18 to 0.3 g/um)

- Spring rate less consistent point-to-point than other media types
- Moderate tip penetration into media
- Edges of membrane contact media
- Even tip wear
- Low particle generation
- Radiuses tips

Courtesy of MIPOX International

Coated Foams Radiuses Tips

New Tips

58kTDs on WA8000-SWE

- Consistent with product documentation, previous results (Broz et. al., SWTW-2007)
- May not be suitable for POAA and low-k dielectric probing
 - Decreased contact area creates increased pressure
 - Qualification at end-of-life required
- Special application opportunity for parametric (scribeline) probing

June 10, 2008

Media Type Summary

- Media type has profound difference on particle generation and wear rate, which are predominantly affected by:
 - Media stiffness
 - Abrasive grit size
 - Abrasive spacing
 - Abrasive Hardness?

Does Abrasive Hardness matter?

Yes, but only when it is less than the tip hardness.

Fused silica abrasive doesn't wear out Pyramid Probe tips

Possible avenue to create an "ideal" medium

Phase 1 Results

Media can be grouped into four classes

- Each class has unique properties, allowing for recipe customization
- Groupings consistent with those in Probe Card Cleaning, "A Short Tutorial", Broz, et al. SWTW-2007
- Wide variety of media properties

Phase 1 Conclusions

Phase 1 shows which media are safe for Pyramid Probes

- 11 media newly recommended
- One class of media to avoid (soft-backed lapping films)
- Phase 1 survey provides a toolset for optimizing media to contaminant
 - 1. Maintain yield while reducing tip wear by 30X
 - 2. Improve yield by increasing effectiveness of cleaning
 - 3. Extend interval between cleaning touchdowns
- We assume that media actually clean probe tips, which is not supported by data— yet.

Next Steps: Phase 2 Survey

Phase 2: Verify cleaning effectiveness with R_c measurements

- Focus on solder ball wafers
- Blanket aluminum wafers
- Use safe media found in Phase 1
- Apply results to minimize Pyramid Probe Cost of Ownership

Work with suppliers to develop "ideal" media

June 10, 2008

Acknowledgements/ Thanks

- Yoshiko Hayase, MIPOX International
 Tetsujiro Tada, MIPOX International
- > Jerry Broz, Ph.D., International Test Solutions

Kim Dermit, Allied High Tech Products, Inc.

- **Bruce Sventek**, 3M Electronics Markets Materials Division
- Josh Smith, Cascade Microtech
 Vickie Van Syckel, Cascade Microtech
- Eric Abel, Ph.D., Cascade Microtech

June 10, 2008

