IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Jan Martens NXP Semiconductors Germany Simon Allgaier Feinmetall GmbH Jerry Broz, Ph.D. International Test Solutions

Methodologies for Assessing On-line Probe Process Parameters

June 8-11, 2008 San Diego, CA USA

Motivation

Joint Venture Overview

- FM: Probe Materials
- ITS: Lab Capabilities
- NXP: Production Environment
- Contact Resistance and Fritting Theory
- Experimental Data
- Production Data
- Results & Future Work

2

Motivation **Joint Venture Overview FM: Probe Materials ITS: Lab Capabilities NXP: Production Environment Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work**

June 11 / 2008

Martens, Allgaier, Broz IEEE SW

Motivation

- Production sort floors are often manpower, materials, and financially limited for fundamental characterization studies which could lead to process understanding and improvement.
- Testing with "full-build" probe cards is expensive and often not feasible, particularly with large array probe cards.
- Assessing combinations of key parameters, such as current amplitude and directionality, probe needle materials, and FAB processing effects on bond pads, requires substantial resource allocation.
- Bench-top testing with a single probe or reduced probe count test vehicles can be performed quickly under known and controlled conditions.

Motivation Joint Venture Overview FM: Probe Materials ITS: Lab Capabilities NXP: Production Environment Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work

June 11 / 2008

Martens, Allgaier, Broz IEEE S

Feinmetall ViProbe[®] New Beam Material

- Beam material with improved performance:
 - high amperage (current carrying capacity, up to 800 mA)
 - low voltage/current applications
 - electrical resistivity: 0.12 Ω mm²/m
- Both materials (existing and new one) are palladium - silver alloys
- Mechanical behaviour of the new beams similar to the existing beams with 2.0 mil, 2.5 mil and 3.0 mil diameter

Feinmetall ViProbe[®] New Beam Material Probe Force vs. Applied Current

ViProbe[®] Testvehicle

Smallest ViProbe[®] test head ever designed and built
 2mil, 2.5mil and 3mil ViProbe compatibility

June 11 / 2008

Martens, Allgaier, Broz

Controlled Test Conditions

Bench-top instrument for material characterization and probe performance testing.

ITS LTU Probe-Gen System

Testing System Details

- Variable z-speed and z-acceleration.
- Low gram load cell measurements.
- Synchronized load vs. overtravel
 vs. CRES data acquisition.
- High resolution video imaging and still image capture.
- Current forcing and measurement with Keithley 2400 source-meter.
- Micro-stepping capable to maximize number of touchdowns.
- Multi-zone cleaning functionalities.

June 11 / 2008

Test Vehicle

High resolution imaging system for video acquisition

ViProbe Test vehicle installed onto 50 gram load cell

June 11 / 2008

Martens, Allgaier, Broz

NXP Testcenter Hamburg Production Environment

- Mass production and engineering site for Automotive and Identification business, digital and mixed signal
- Applications with high multisite factors and small pad pitch
- Capability to collect contact resistance data within production environment

Motivation Joint Venture Overview FM: Probe Materials ITS: Lab Capabilities NXP: Production Environment

Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work

June 11 / 2008

Martens, Allgaier, Broz

Contact Resistance (CRES)

- Contact Resistance is a combination two main parameters igodol
 - Localized physical mechanisms ... metallic contact
 - Non-conductive contribution ... film resistance
- Model for CRES has two main factors igodol

sistivity values METALLIC fter material

 $\frac{(\rho_{probe} + \rho_{pad})}{\Lambda}$

CONTACT applied force normalized by true con

Unstable CRES is dominated by the film contribution formed • due to the accumulation of non-conductive materials

June 11 / 2008

Martens, Allgaier, Broz

IEEE SW Test Workshop

FILM

film

Key Factors that affect CRES

- Presence of contamination, e.g. debris, oxides, residues, etc.
 - Film resistance eventually dominates the magnitude and stability of the CRES
- Probe tip shape plays an important role in displacing the contaminants from the true contact area
 - <u>True</u> Contact Area = \mathcal{F} (Tip Shape, Applied Force, Surface Finish)
 - *True* contact are is "large" → applied pressure and *a-Spot* density are "low"
 - True contact area is "small" → applied pressure and a-Spot density are "large"
- Probe tip surface characteristics affect the "a-Spot" density
 - Asperity density depends on the microscopic surface roughness
 - Smooth surfaces have a high asperity density
 - The increase in asperity density decreases the electrical CRES
 - A "rough" finish facilitates material accumulation on contact surface
- Amplitude and directionality of the voltage or current applied.
 Voltage or current must be sufficient to breakdown the oxide.

- The vertical Probe tip touches the contact pad.
- Depending on the contact pressure the oxide film is broken partly and electrical bridges arise.
- The number and size of the bridges is equivalent to the C_{RES} quality

Contact Pad

Probe Tip

June 11 / 2008

Martens, Allgaier, Broz

• What happens, if bridges are only few and small?

June 11 / 2008

Martens, Allgaier, Broz

- Current must flow through small bridge.
- Bridge and neighbourhood are heated up
- Contact Pad material migrates to the bridge.

High current flow situation: Black \rightarrow Lines of current flow. White \rightarrow Lines of equipotential surface.

June 11 / 2008

Martens, Allgaier, Broz IEEE S

- Bridge is widened $\rightarrow C_{RES}$ decreased
- Contact pad material migrated to the bridge and tip surface

June 11 / 2008

Martens, Allgaier, Broz

Fritting – What's that?

- Fritting is a kind of electrical breakdown at the contact surface between the probe tip and the contact pad of the IC.
- It improves the electrical contact by building or stabilizing bridges through the oxide film, if the film was not mechanically broken completely.
- After Fritting the probe tip is welded with the contact pad. After removing the contact residuals of the welding remain at the probe tip and will oxidize.

Probe Tip

Contact Pad

June 11 / 2008

Martens, Allgaier, Broz IEEE S

Motivation Joint Venture Overview

FM: Probe Materials

ITS: Lab Capabilities NXP: Production Environment Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work

June 11 / 2008

Martens, Allgaier, Broz

Experimental Data / Parameters

• Input Parameters:

- Overtravel (OT, μm)
- Probe Material
- Contact Material (Rhodium, Rh, Aluminum 600nm, Al)
- Electrical Conditions (Current and direction, mA)
- Number of Touchdowns (TDs)

• Output Measures:

- Contact Resistance (Cres, Ohm)
- Contact Force (CF, cN)
- Visual Inspection (Video Camera System)
- Scanning Electron Microscope (SEM)

What is a "Bathtub" Curve ?

• A symmetric "bathtub" curve at full overtravel is preferable.

Bathtub Experiments

Test Sequence

- CRES vs Overtravel performance tests up to 100µm overtravel (OT)
- CRES measurement Pin-to-Pin with 3mil diameter
- Test Execution for total 30 TDs each
 - Performed on Rh-Plate and Al-Wafer
 - Performed with existing and new beam material
 - Performed at 1mA and 100mA

Bathtub Comparison I

Bathtub Comparison II

Bathtub Comparison III

CRES vs. Current

Test Sequence

- 30 TDs at 38µm Overtravel (no intermetallic contact on Al-Wafer)
- CRES measurement Pin-to-Pin with 3mil beam diameter
- Test Execution for total 30 TDs each
 - Performed for a set of currents (1mA-1A)
 - Performed on Rh-Plate and on Al-Wafer
 - Performed with existing and new beam material

CRES vs. Current

Visualization of Test

- Pin-to-Pin CRES across substrates
 - <u>NO FRITTING</u> observed on Rhodium plate
 - FRITTING observed 600nm Aluminum wafer

ITS - Test Analysis Center

June 11 / 2008

Martens, Allgaier, Broz IEE

CRES Longterm tests

Test Sequence

- 200 TDs on a 600nm Aluminum Wafer at 38µm Overtravel
- CRES vs Overtravel performance tests up to 100µm overtravel on a Rh-Plate
- Test Execution for total of 20K TDs on wafer
 - Al-wafer with 1mA and Rh-Plate at 1mA
 - Al-wafer with 300mA and Rh-Plate at 300mA
 - Performed with existing and new beam material
 - Performed Pin-To-Pin
 - No Cleaning at all

CRES Longterm Tests

CRES Longterm Tests

35

SEM Images after 20K TD Longterm Test @ 1 and 300mA without any Cleaning

Existing Material - Initial

New Material - Initial

June 11 / 2008

ITS_4927 2008/05/05 07:30 L D2.0 x1.8k 50 um

20K 1mA AI + 1mA Rh

20K 300mA AI + 300mA Rh

20K 300mA AI + 300mA Rh

Martens, Allgaier, Broz

CRES Longterm Tests Pin High / Low

Test Sequence

- 200 TDs on a 600nm Aluminum Wafer at 25µm
 Overtravel
- CRES vs Overtravel performance tests up to 100µm overtravel on a Rh-Plate
- Test Execution for total of 20K TDs on wafer
 - Pin with 300mA (High) and Rh-Plate (Low)
 - Pin with 300mA (Low) and Rh-Plate (High)
 - Performed with existing and new probe material
 - Performed without cleaning

CRES Longterm Tests

CRES Histogram after 15K TDs @ 300mA without Cleaning

CRES Longterm tests

CRES Cum. Probability after 15K TDs @ 300mA without Cleaning

39

SEM Images after 20K TD Longterm Test @ 300mA without any Cleaning Pin low Pin High

Exist Mat

New Mat

40

Motivation **Joint Venture Overview FM: Probe Materials ITS: Lab Capabilities NXP: Production Environment Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work**

June 11 / 2008

Martens, Allgaier, Broz

Production CRES Measurement

- Smartcard application 32x parallel
- One Probecard with 16 sites existing Material (red) 16 sites new Material (green) with symmetric pattern
- CRES Monitor on digital channel put into std. Production Test
 Program

June 11 / 2008

Martens, Allgaier, Broz

Production Data

Motivation Joint Venture Overview

FM: Probe Materials ITS: Lab Capabilities NXP: Production Environment Contact Resistance and Fritting Theory Experimental Data Production Data Results & Future Work

June 11 / 2008

Martens, Allgaier, Broz

Results & Future Work I

- New beam material was evaluated in lab and production environments
 - Decrease of resistivity proven: -550 mOhm compared to existing material
 - New Beam material shows better film contact resistance and fritting performance
- Amplitude and directionality of applied current/voltage highly influenced the accumulation of debris as well as the increase of film resistance
 - Higher currents lead to higher CRES
 - Positive voltages higher affected than negative voltages
- Off-line testing under controlled conditions with "standardized" methods can provide key insights for understanding CRES behavior that can help a probe engineer develop wafer sort processes and define cleaning practices.

Results & Future Work II (many interestesting studies !)

- Evaluate fab processed materials
 Shorted wafers and test die
- Define an "Online Cleaning Rules Set"
- Investigating the effects and repercussions of the Fritting mechanisms
- Temperature influence on film resistance
 Range similar to production

Acknowledgements

- Feinmetall Engineering Development and Design Teams
- ITS Applications Engineering Team

 Andrea Haag (Engineering Technician)

June 11 / 2008

Martens, Allgaier, Broz

Men At Work

June 11 / 2008

Martens, Allgaier, Broz

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Thank you! Questions?

