IEEE SW Test Workshop Semiconductor Wafer Test Workshop

S.Dharmarajan Mike Goode Cadence Design Systems

Accelerating CAD design of Probe Cards using Allegro System Architect

June 8-11, 2008 San Diego, CA USA

Topics

- About this paper
- Background
- Desired Goals
- How Allegro System Architect is different
- Results
 - Strengths/ Weaknesses
- Summary / Conclusion
- Follow-up

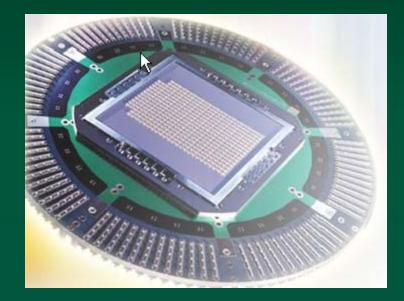
About this Paper

Target Audience

 Designers / Managers / Influencers associated with design of probe cards

• What is in it for you

 knowledge about a solution which can accelerate design of probe cards significantly



June 8 to 11, 2008

Background

• Probe cards

- Test multiple identical devices
- More constraints
- Larger sizes
- Handling component changes

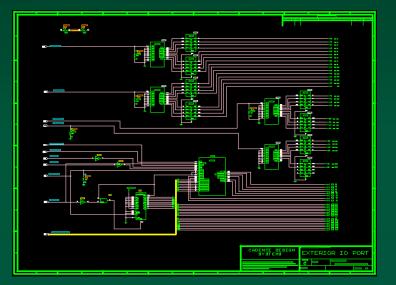
June 8 to 11, 2008

Key Design Challenges

Symmetry

- The devices are identical
 - But instances and nets need to be named uniquely – following a pattern

Constraints


- Matched delays for groups/buses
- Total delay constraints
- Differential pairs
- Terminations

June 8 to 11, 2008

Current Solutions (1)

- Schematic based solutions
 - Easily understandable for small designs
- Problems
 - Difficult to scale for size / number
 - Time consuming top create
 - Handling change is tedious
 - Connectivity is "layout driven"; not just logic driven

June 8 to 11, 2008

Current Solutions (2)

 Custom Excel based solutions – Quick and Customized Problems Need maintenance - Typically handle only netlists – no constraints – can't handle change

98456							
30430	DIE (um)	•	SCRIBE (um)	-	STEP(um)		STEP(mils)
×	6284.0R		146.00	-	6430.0		253.15
Ŷ	5148.0		92.00	-	5240.0		206.30
1 ·	0140.00	52.22 Kmil ²					
PAD	SIZE (um)		PAD SIZE (m	ils)		PITCH (um)	
1112		2.99					
	76.00	-		1		121.60	
1			Pad	HP	Wire Pad		
Die Pad	X coord	Y coord	Function	Channel	Name		uble Wide Bonding Pads ?
1	116.210	96,190	VSS	VSS	VSS	DUTA	
2	104.448	96,190	AESD(16)	18	18	DUTA	
3	99,606	96,190	AESD(22)	24	24	DUTA	
4	94.763	96,190	AESD(21)	23	23	DUTA	
5	89.921	96,190	AESD(15)	17	17	DUTA	
6	79.246	96,190	AESD(14)	15	15	DUTA	
7	74.404	96,190	AESD(13)	14	14	DUTA	
8	69.561	96,190	AESD(12)	13	13	DUTA	
9	64.719	96,190	AESD(11)	12	12	DUTA	
10	59.876	96,190	AESD(10)	11	11	DUTA	
11	48.332	96,190	AESD(9)	10	10	DUTA	
12	43.490	96,190	AESD(8)	9	9	DUTA	
13	38.647	96,190	AESD(19)	21	21	DUTA	
14	33.805	96,190	VPBESD	16	16	DUTA	
15	28.962	96,190	AVDBESD	28	28	DUTA	
16	23.736	96,190	VCC	VCC1A	VCC1A	DUTA	
17	17.592	96,190	VSS	VSS	VSS	DUTA	
18	5.998	96,190	CEBESD	27	27	DUTA	
19	-31.094	96,190	RSTBESD	29	29	DUTA	
20	-36.646	96,190	ACCESD	VPP1	VPP1	DUTA	
21	-47.680	96,190	VEBESD	30	30	DUTA	
22	-53,436	96,190	AESD(23)	25	25	DUTA	
23	-64.129	96,190	AESD(20)	22	22	DUTA	
24	-68.972	96,190	AESD(18)	20	20	DUTA	
25	-73.814	96,190	AESD(17)	19	19	DUTA	
26	-78.657	96,190	AESD(7)	8	8	DUTA	
27	-83,499	96,190	AESD(6)	7	7	DUTA	
28	-94.791	96,190	AESD(5)	6	6	DUTA	
29	-99.633	96,190	AESD(4)	5	5	DUTA	
30	-104.476	96,190	AESD(3)	4	4	DUTA	
31	-114.647	96,190	VCC	VCC1A	VCC1A	DUTA	
32	-108.207	-94,439	RDY	26	26	DUTA	
33	-99.935	-94.439	10(0)	1	1	DUTA	
24	91662	04.420	10(9)	٩	٩	ПИТА	

The underlying problem

Why do current solutions break

- A large amount of data is being manipulated
- Can't handle patterns or replication natively
- Graphics based netlisters but graphics dont add value
- connectivity is driven back to front!

June 8 to 11, 2008

Spreadsheet Editor for design creation

Spreadsheet Editor for connectivity

Key Components

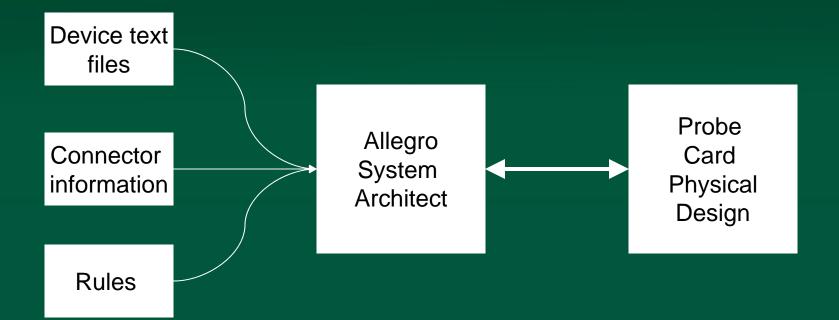
 Component and Signals in tabular / spreadsheet like views

		Comp	ionent List		1				Signa	al Connectiv	/ity Details				
Ð	Ins	Ref	Cell	i											
*	*	*	*	*			10_175								
	AP		apu					L	In-(n	Pin Name	Die blueben	D:- T	T	. 達 #.	A
	AP		apu		=		Cell	Instance V	Ref Des		Pin Number	J			<u> </u>
	но		host		_		*	*	*	*	*	*	*	* *	
	i1	P12	pwrlug_6				vhdm_f	i30	J4	b16	B16	Inout			
Sam.	i2	P16	pwrlug_6				vhdm_f	i30	J4	b17	B17	Inout			
	i3	P17	pwrlug_6				vhdm_f	i30	J4	f1	F1	Inout			
5	i4	P19	pwrlug_6				vhdm_f	i29	J3	b16	B16	Inout	Series		
Ser.	i5	P11	pwrlug_6				vhdm_f	i29	J3	b17	B17	Inout			
	i6	P15	pwrlug_6				vhdm_f	i26	J1	b16	B16	Inout			
Ser.	i7	P18	pwrlug_6				vhdm_f	i26	J1	b17	B17	Inout			
5	i8	P20	pwrlug_6				host	HOST_BLADE		IO_1V5		Inout			
Ser.	i9	P14	head3x9				apu	APU2_BLADE		IO_1V5		Inout			
11 M C	i10	P13	head3x9				apu	APU1_BLADE		10_175		Inout			
Cor.	i11	D1	bss138lt1		~										
		Sig	nal List	ļ	_										
т	Phys I	Name	Cor	nn i	^										
*	*		*	*		•									
٩L	PS2_P	FAIL		2	· 1										
њĽ.	PS2_P	WRGD		2											
ħĿ	SIGNA	L_2		2										-	
ħĹ	ITP_R	ESET		3											
μĽ	PS1_I	NHBT		3 i											
ħĹ	AP1_N	IEMGNT		5											
₽G	+1.65	W.		7											
₽G	+5V			8											
빝	IO_1V	5	1	10											
μĿ	NC_N1	T3_RX	1	17											
ΈĿ	NC_N1	тз_тх	1	17											
	NC_N1			17											
	NC_N1	T4_TX		17						<u> </u>					×
₩G	+12∀		2	22	$\mathbf{\mathbf{v}}$		In Sign	nal IO_1V5			•				►

June 8 to 11, 2008

Technical aspects of Allegro System Architect

- A spreadsheet based editor for design connectivity
 - Patterns, copy-paste, sort, filter, find-replace over large amounts of data
 - Understands CAD data natively
 - Spreadsheet formats allows connectivity to be driven from layout
 - Clean access to text imports, exports, differences


June 8 to 11, 2008

How does a spreadsheet solution help

Problem	Solution
Large data sets	Spreadsheet Editor
	 No need for symbols
	 Handle thousands of nets/pins
Patterns and replication	Use copy paste, sort, filter find replace
Layout Driven Connectivity	Can drive connectivity in either direction with equal ease
Constraint Management	Understands CAD data natively

Design Flow

June 8 to 11, 2008

Strengths / Weaknesses

Strengths

- Spread Editing of Connectivity
- Eco management / speed
- Constraint handling
- Layout driven connectivity

Weakness's

 Documentation schematics are not aesthetic

June 8 to 11, 2008

Typical Results

- Significant Reduction in time especially if using schematic based methods
- Better productivity if constraints need to be managed (for large digital devices)
- Work required to substitute home-grown solutions with this solution
- Gains increase with Volume & design size

 Not worth effort for very small / very infrequent designs spins

June 8 to 11, 2008

Follow-on

- Talk to the authors

 Mike Goode , mgoode@cadence.com
- Avoid graphics the next time you build a probe card
- Send us questions and comments

June 8 to 11, 2008