IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> June 7-10, 2009 San Diego, CA

Optimization of Wafer Level Test Hardware using Signal Integrity Simulation

Jason Mroczkowski Ryan Satrom

SEMICONDUCTOR TEST GROUP

Agenda

- Industry Drivers
- Wafer Scale Test Interface Simulation
- Simulation Techniques
- Capturing Interfaces
- Full Test Interface Simulation Example
 - Components that most impact performance
 - Optimization of interfaces
 - Full system results

Wafer Scale Test - Industry Drivers

- Industry Expectations
 - Short lead-times
 - Low cost varies with complexity
 - High quality First Pass Success!
- Challenges
 - DUT complexity faster, smaller, integrated
 - Test hardware complexity fine pitch, low inductance, matched impedance

June 7 to 10, 2009

We offer three kinds of service: **GOOD - CHEAP - FAST** <u>You can pick any two</u> GOOD service CHEAP won't be FAST GOOD service FAST won't be CHEAP FAST service CHEAP won't be GOOD

Don't let this happen to you

Lowering the Cost of Test

Eliminate Guesswork Through **Signal Integrity Simulation**

- Ensure performance prior to fabrication
- Eliminate re-spins and time consuming lab analysis
- Simulate All Structures in the Path from the Tester to the DUT

Tester

June 7 to 10, 2009

Test Interface Simulation Focus on Critical

Nets

•

- Full PCB signal integrity simulation not necessary
- Not all traces are high speed
- Similar layouts require single simulation
- Good isolation in multilayer PCB minimizes crosstalk

Simulation Techniques Lumped Element Models (SPICE)

- Generic (not pinout specific)
- No physical length
- Ideal elements
- Must be highly distributed to be accurate into GHz range
- Appropriate for component (capacitor, inductor, balun) models

Simulation Techniques

- Transmission Line Models
 - Cross-sectional per unit length model
 - Captures physical properties of materials
 - Appropriate for straight traces

Simulation Techniques

- 2.5D Electromagnetics
 - Captures effects of bends and cross-talk
 - Makes approximations for vias, conductor thickness, etc.
 - Appropriate for planar geometries

June 7 to 10, 2009

Simulation Techniques

- Full 3D Electromagnetic
 Simulation
 - Probe Cards
 - Connectors
 - -Vias
 - Packages
- Most Rigorous Simulation
 Technique
- Captures All Losses of Physical Environment

Interface Simulation

Sum of Pieces:

- 1dB Contactor
- 1dB Board
- 1dB Connectors, Launches
- ≠ 3dB @ *n* GHz
- Collection of Pieces Approach Does Not Account for Transitions

FULL SYSTEM MODELING - INSERTION LOSS (dB)

June 7 to 10, 2009

Case Study: High Speed Probe Card Test

- Testing of RF Input to DUT
- 2.4 GHz Test Requirement
- Will a Probe Card Support This?

June 7 to 10, 2009

Probe Card Test Interface

Physical Description of Components

Trace Length Loss

- **Often Major Contributor to Overall Loss** •
- Must Correlate with Manufacturing Process •
- Worst Case (16") 1dB @ 300 MHz
- Best Case (2") 1dB @ 5 GHz

DB([S(1,2)])

Nelco4000-13/SI Correlation

Optimization: Stub Removal

- Stub Full Length Via and Inner Layer Trace
- Backdrill Remove Via to Trace Layer
- Worst Case 1dB @ 2 GHz
- Best Case 1dB @ 8 GHz

Probe Needle Optimization

- The needles have very high impedance, above 300 Ohms.
- Impedance can be lowered with epoxy to improve performance

Worst Case 1dB @ 1 GHz

Best Case 1dB @ 1.4 GHz

SWIW HHV

June 7 to 10, 2009

System Simulation

Model Includes:

- Connector
 - 3D EM simulation
- PCB traces
 - Transmission line models
- Balun
 - Manufacturer SPICE model

- Capacitors
 - Manufacturer SPICE model
- Vias
 - 3D EM simulation
- Probe card
 - 3D EM simulation

System Performance

- Total System 3dB Loss point @ 1.9 GHz
- Probe needles account for majority of loss

SWTW HHH

Probe Needle Alternative

Spring Probe

- Probes 3mm vs needles 50mm
- Probe impedance $80-120\Omega$
- Needle impedance 125-300 Ω
- Probes 1dB @ 21.4 GHz

Probes w/ 50mm trace 1dB @ 8.0GHz

Probe Card vs. Contactor System Simulation Results

Bandwidth •

10GB/s Eye Diagram

- Probe Card 3dB @ 1.9 GHz
 Probe Card 44ps rise-time
- Spring Probe 3dB @ 6.1 GHz Spring Probe 24ps rise-time

Going Forward

Other Variables Not Optimized:

 Via diameter, trace width, board material, clearance diameters, ground vias, package, etc.

• Future Work

 Performance matrix for Engineers to quickly determine loss given tester, probe type, board material

							Insertio	on Loss	20-80 Output Rise Time		
							S12		10ps	50ps	100ps
VIEW	Pitch	Probe	РСВ	GND	Trace	Length	-1dB	-3dB	INPUT	INPUT	INPUT
<u>X</u>	0.4mm	Gem040	N4000-13	GSSG	Stripline	02in	3.8	12.1	15.9	53.9	103.7
<u>X</u>	0.4mm	Gem040	N4000-13	GSSG	Stripline	12in	0.4	1.8	81.8	116.2	153.3
(WITH)											
	N.	lupe 7 to 10, 2000			IEEE SW/ Test Workshop				21		
C WW	15	June / 10, 2008					21				

Summary

 System Performance Impacted by Choice of Hardware Components and Design of Performance Board

Simulation Can Optimize Performance
 Before Fabrication

 Simulation Reduces Lab Characterization and Re-spins and Provides Fastest Path to Production

