IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> June 7-10, 2009 San Diego, CA

MEMS Technology - Enabling Design Flexibility for Fine Pitch Probing

Bahadir Tunaboylu, PhD & Gerry Back SV Probe, Inc. 2120 W Guadalupe Rd Ste 112 Gilbert, AZ 85233

Outline

Introduction

Emerging fine pitch peripheral & array test requirements at 60µm pitch

- > Design perspective & probing multiple DUTs by cantilever vs. vertical probe
- > Contact model for vertical probe contacts to control bond pad damage

Method & Systems for Characterization

- Hertzian contact mechanics & Holm electrical contact model
- Instrumentation & software

Test Results & Analysis

- MEMS-based vertical technology contact performance for various contact metallurgies on wafers
 - Contact on aluminum, copper & lead-tin
 - Contact resistance as a function of contact force & current

Summary & Follow-on Work

Fine Pitch Probing

- Cantilever probing approaches, both traditional & MEMS-cantilever, have limitations for multidut probing at 60µm-pitch :
 - Number of rows of bond pads are limited, dependent heavily on pad density
 - Corner keep-out in device layouts
 - Requires skip-DUT configurations, compromising test stepping efficiency

Vertical probing technology approaches allow more rows of peripheral pads & array patterns

Probing Technology & Design Capability

Fine Pitch Probing

□ Fine pitch probing requires precise control of alignment at pad sizes of 45µmx45µm

- Contact model for vertical probe contacts is different than cantilever style beams
 - Scrub marks generated by cantilever beams by design is typically longer than marks by vertical probes
- Accurate guiding of probes permits finer controls & precise scrub marks for Vertical. The tolerances on guiding holes as well as probes are critical for positions

Probe action, scrub mark size & depth must be precisely controlled to prevent damage to bond pads & low-k dielectrics

Study scrub behavior, determine scrub length, width, depth & also the debris pile created

Vertical- Buckling Beam

MEMS Fine Pitch Vertical

Methodology for Analysis

Contact Model

- Hertzian Contact Mechanics
 - Software model is developed for predictive scrub behavior on various wafer pad metallurgies, based on VB code
 - Simplified Holm electrical contact model

□ Test systems for scrub mark & contact resistance characterization

- Instrumentation
 - Probe: TEL P12 XLn
 - Keithley Tester & Source Meter
 - Nikon Optical Inspection System
 - Veeco Profilometer
 - Test Wafers: Al, Cu, PbSn
 - Probing Technology: MEMS-Fine Pitch Vertical Technology (LogicTouch™)

MEMS-Fine Pitch Vertical Probing Technology for Contact Study

> Technology scalable to 50µm & 40µm pitch

> Supports much higher speeds & bandwidth

compared to cantilever technologies

Probe Contact

Contact Model

Hertzian Contact Mechanics: Hertz's classical solution provides the foundation in contact mechanics of solid pairs (of two surfaces). The size & depth of an indentation of a probe into a flat surface can be estimated by Hertz contact stresses. GW model based on Hertz theory is assumed where the probe tip of radius r indents a flat plane to depth d, creates a contact area of radius a = √rd. The force equation

$F = 4/3 Er^{1/2} (z_s - d)^{3/2}$

Where z_s is the normalized summit height & elastic modulus E of the equivalent surface is given as

$1/E = (1-v_1^2)/E_1 + (1-v_2^2)/E_2$

Where v is the Poisson's ratio & two bodies of 1 & 2

- Surfaces are rough & the apparent contact area between a probe tip & the pad is not the actual load bearing area due to asperities. The real area of contact is found as, $A_r/A_a = 1 3\%$
- > Metallic surfaces also have insulating films. Real intimate contact & load bearing area is actually much smaller & the electrical conduction is achieved through these a-spots, conducting contact areas. Holm defined the electrical contact model using this constriction resistance, $R_f = \rho/A_c$, between contacting members by extension of Ohm's law.

Predict scrub mark by known properties of probe materials, pad materials & geometry

Model of Surface Roughness

Contact Model Results for Aluminum

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.

June 7 to 10, 2009

Contact Model Results on Copper

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.

June 7 to 10, 2009

Contact Model Results on PbSn

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.

June 7 to 10, 2009

Experimental Scrub Characterization

Scrub marks by standard cantilever & vertical technologies

Generation FPV Scrub Characterization

□ Comparative study of multiple TDs on Al & Cu pads

Scrub dimensions were measured

- > Two different tip diameters were studied
- □ Contact resistance behavior was also investigated
 - Contact resistance (Cres) was measured per TD & as a function of overdrive to determine the onset of fritting
 - Cres was measured during lifecycle experiments monitoring stability for AI, Cu as well as PbSn

Cantilever Technology Scrub Marks

Wafer

Vertical Technology Scrub Marks

<u>Conditions:</u> 125 μm O.D 3-milØ Pointed Probe 13 μm Tip Aluminum Wafer

Test Results for FPV: Resistance Comparison for Different Pad Materials

Contact resistance values are path resistance measurements & not normalized

SWIW CHHV-S

June 7 to 10, 2009

IEEE SW Test Workshop

Baseline Resistance

Cres Behavior on Al

Contact resistance as a function of overdrive for current values of 1, 50, 100 & 200 mA. It appears that the fritting takes place below 1 mil OD, the fritting ratio drops as the OD increases.

Cres Testing on Al

Contact resistance results up to 1M TDs. Resistance is the path resistance including the Cres.

June 7 to 10, 2009

Cres Behavior on Cu

Contact resistance as a function of overdrive for current values of 1, 50, 100 & 200 mA. Resistance is the path resistance including the Cres. Cres unstable below 1 mil OD & stabilizes at higher OD.

June 7 to 10, 2009

Cres Testing on Cu

Contact resistance results up to 100K TDs. Resistance is the path resistance including the Cres.

June 7 to 10, 2009

Cres Testing on PbSn

Contact resistance results up to 100K TDs. Resistance is the path resistance including the Cres.

June 7 to 10, 2009

Comparing Means of Scrub Depth for AI & Cu

Fit Y by X Group

Scrub depth on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip diameter is 8 $\mu m.$

June 7 to 10, 2009

Comparing Means of Scrub Depth

Fit Y by X Group

Scrub depth on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip diameter is 10 $\mu m.$

June 7 to 10, 2009

Comparing Means of Debris Pile Height

Scrub pile height on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip diameter is 8 μ m.

June 7 to 10, 2009

Comparing Means of Scrub Diameter

Fit Y by X Group

Scrub diameter on AI & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip diameter is 8 $\mu m.$

June 7 to 10, 2009

Scrub Optical Images on AI at 1 vs 4 TDs

Scrub marks on AI imaged optically

June 7 to 10, 2009

3D Scan for Multiple Touchdowns on Al

June 7 to 10, 2009

2D Scan 1TD Case for Al

Depth

Debris Height

Diameter

June 7 to 10, 2009

IEEE SW Test Workshop

<u>28</u>

Scrub Optical Images on Cu at 1 vs 4 TDs

Scrub marks on Cu imaged optically.

June 7 to 10, 2009

3D Scan for Multiple Touchdowns on Cu

June 7 to 10, 2009

Summary

- For fine pitch multidut requirements, vertical probe technologies provide advantages over cantilever approaches with design flexibilities
 - MEMS-based vertical technology has an edge over buckling beam technologies for design flexibility for highly parallel peripheral devices as well as accuracy of scrub signatures required for smaller pad sizes
- Contact mechanics for MEMS-based fine pitch vertical technology is studied on various contact metallurgies.
 - Calculations for scrub depth correlate well for aluminum and copper pad contacts in experimental results. It appears that the modeling can also predict contact resistance for these pad metallurgies. This allows predictive performance of contact pin & pad materials of choice.
 - Contact resistance is studied as a function of test parameters. Stable contact resistance is achieved for three types of pad/bump metallurgies.

□ Initial results were presented for solder bump probing.

More scrub analysis and characterization on different solder metallurgies on copper pillars are needed.

References

- 1. Handbook of Micro/Nano Tribology, 2nd ed., edited by B. Bhushan, 1999
- 2. Electric Contacts, R. Holm, 4th ed.
- 3. Electrical contacts-2001, Proceedings of the 47th IEEE Holm Conference on Electrical Contacts
- 4. SWTW 2006, C. Degen et al, "Parametric Study of Contact Fritting for Improved CRes Stability".
- 5. SWTW 2006, J. Martens, on "Fritting"

Acknowledgments

Authors gratefully acknowledge the analytical support from Jeff Hicklin & Habib Kilicaslan

