
MEMS Technology - Enabling Design 
Flexibility for Fine Pitch Probing

Bahadir Tunaboylu, PhD
& Gerry Back

SV Probe, Inc.
2120 W Guadalupe Rd Ste 112

Gilbert, AZ 85233

June 7-10, 2009
San Diego, CA



June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 22

Outline
 Introduction

 Emerging fine pitch peripheral & array test requirements at 60µm pitch
 Design perspective & probing multiple DUTs by cantilever vs. vertical probe 
 Contact model for vertical probe contacts to control bond pad damage

 Method & Systems for Characterization
 Hertzian contact mechanics & Holm electrical contact model
 Instrumentation & software

 Test Results & Analysis
 MEMS-based vertical technology contact performance for various contact 

metallurgies on wafers
 Contact on aluminum, copper & lead-tin 
 Contact resistance as a function of contact force & current

 Summary & Follow-on Work
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Fine Pitch Probing
 Cantilever probing approaches, both traditional 

& MEMS-cantilever, have limitations for 
multidut probing at 60µm-pitch :
 Number of rows of bond pads are limited, dependent 

heavily on pad density 
 Corner keep-out in device layouts
 Requires skip-DUT configurations, compromising test 

stepping efficiency
 Vertical probing technology approaches allow 

more rows of peripheral pads & array patterns
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Cantilever TechnologiesCantilever Technologies Vertical- Buckling BeamVertical- Buckling Beam MEMS Fine Pitch VerticalMEMS Fine Pitch Vertical

Probing Technology & Scrub on Pads 

MEMS Cantilever
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Fine Pitch Probing

 Fine pitch probing requires precise control 
of alignment at pad sizes of 45µmx45µm
 Contact model for vertical probe contacts 

is different than cantilever style beams
 Scrub marks generated by cantilever beams 

by design is typically longer than marks by 
vertical probes

 Accurate guiding of probes permits finer 
controls & precise scrub marks for Vertical. 
The tolerances on guiding holes as well as 
probes are critical for positions

 Probe action, scrub mark size & depth 
must be precisely controlled to prevent 
damage to bond pads & low-k dielectrics
 Study scrub behavior, determine scrub 

length, width, depth & also the debris pile 
created

Vertical- Buckling BeamVertical- Buckling Beam

MEMS Fine Pitch VerticalMEMS Fine Pitch Vertical
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Methodology for Analysis
 Contact Model

 Hertzian Contact Mechanics 
 Software model is developed for predictive scrub behavior on various 

wafer pad metallurgies, based on VB code
 Simplified Holm electrical contact model

 Test systems for scrub mark & contact resistance characterization
 Instrumentation

 Probe: TEL P12 XLn
 Keithley Tester & Source Meter
 Nikon Optical Inspection System
 Veeco Profilometer
 Test Wafers: Al, Cu, PbSn 
 Probing Technology: MEMS-Fine Pitch Vertical Technology 

(LogicTouch™)
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MEMS-Fine Pitch Vertical Probing 
Technology for Contact Study

1

3 24

1. Probes
2. Space Transformer (MLC)
3. Interposer
4. PCB

ProbesProbes

 60/30µm layout is shown
 Technology scalable to 50µm & 40µm pitch
 Supports much higher speeds & bandwidth 
compared to cantilever technologies
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Probe Contact
 Contact Model

 Hertzian Contact Mechanics: Hertz’s classical solution provides 
the foundation in contact mechanics of solid pairs (of two 
surfaces). The size & depth of an indentation of a probe into a flat 
surface can be estimated by Hertz contact stresses. GW model 
based on Hertz theory is assumed where the probe tip of radius r
indents a flat plane to depth d, creates a contact area of radius a = 
√rd . The force equation

F = 4/3 Er1/2 (zs – d)3/2

Where zs is the normalized summit height &  elastic modulus E of the 
equivalent surface is given as

1/E = (1-ν1
2)/E1 + (1- ν2

2)/E2
Where v is the Poisson’s ratio & two bodies of 1 &  2

 Surfaces are rough & the apparent contact area between a probe 
tip & the pad is not the actual load bearing area due to asperities. 
The real area of contact is found as, Ar/Aa = 1 - 3%

 Metallic surfaces also have insulating films. Real intimate contact & 
load bearing area is actually much smaller & the electrical 
conduction is achieved through these a-spots, conducting contact 
areas. Holm defined the electrical contact model using this 
constriction resistance, Rf = ρ/Ac , between contacting members 
by extension of Ohm’s law. 

 Predict scrub mark by known properties of probe 
materials, pad materials & geometry

Radius a of 
Conducting Spot

Probe Force

Spherical Tip 
of radius r

Wafer Pad

Model of Surface Roughness
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Contact Model Results for Aluminum

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.

Input Parameters
FPV Probe tip: 4um radius

Overdrive: 63.5um

Force: 7 g

Pad: Al

Results
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Contact Model Results on Copper

Input Parameters
Probe tip: 4um radius

Overdrive: 63.5um

Force: 7 g

Pad: Cu

Results

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.
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Contact Model Results on PbSn

Input Parameters
Probe tip: 4um radius

Overdrive: 63.5um

Force: 7 g

Pad (Bump): PbSn

Results

Scrub depth as a function of probe force. Assumes a hemispherical probe tip.
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Experimental Scrub Characterization 
Scrub marks by standard cantilever & vertical 

technologies
FPV Scrub Characterization

 Comparative study of multiple TDs on Al & Cu pads
Scrub dimensions were measured
Two different tip diameters were studied

 Contact resistance behavior was also investigated
Contact resistance (Cres) was measured per TD & as a function 

of overdrive to determine the onset of fritting
Cres was measured during lifecycle experiments monitoring 

stability for Al, Cu as well as PbSn
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Conditions:

50µm O.D

Force: 2.3 g 
@ 50µm

3-milØ WRe

10µm Tip 
Diameter

Aluminum 
Wafer

Cantilever Technology Scrub Marks 

Veeco ProfilometerVeeco Profilometer

Scrub: 25umx10µm
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Vertical Technology Scrub Marks

125 µm O.D

3-milØ Pointed Probe

13 µm Tip

Aluminum Wafer

Conditions:
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Test Results for FPV: Resistance 
Comparison for Different Pad Materials
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Cres Behavior on Al 
 Resistance vs Overdrive on Aluminum
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Contact resistance as a function of overdrive for current values of 1, 50, 100 & 
200 mA.  It appears that the fritting takes place below 1 mil OD, the fritting ratio 
drops as the OD increases.
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Cres Testing on Al 

Contact resistance results up to 1M TDs. Resistance is the path resistance 
including the Cres.

LIFE TEST RESISTANCE ON ALUMINUM WAFER 2.5 MIL OD
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Cres Behavior on Cu 

Contact resistance as a function of overdrive for current values of 1, 50, 
100 & 200 mA. Resistance is the path resistance including the Cres.
Cres unstable below 1 mil OD & stabilizes at higher OD.

 Resistance vs. Overdrive on Copper
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Cres Testing on Cu 

Contact resistance results up to 100K TDs. Resistance is the 
path resistance including the Cres.

Path Resistance on Copper Wafer
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Cres Testing on PbSn
Path Resistance on Solder Lead-Tin 
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Contact resistance results up to 100K TDs. Resistance is the path 
resistance including the Cres.
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Comparing Means of Scrub Depth for Al & Cu
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Scrub depth on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip 
diameter is 8 µm.
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Comparing Means of Scrub Depth

Scrub depth on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip 
diameter is 10 µm.
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Comparing Means of Debris Pile Height
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Scrub pile height on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe 
tip diameter is 8 µm.
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Comparing Means of Scrub Diameter
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 Scrub Diameter versus Touchdowns on Copper

Fit Y by X Group

Scrub diameter on Al & Cu for 1, 4, 8 & 12 TDs on the same spot. Probe tip 
diameter is 8 µm.
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Scrub Optical Images on Al at 1 vs 4 TDs

Scrub marks on Al imaged optically
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3D Scan for Multiple Touchdowns on Al

1 TD1 TD 4 TD4 TD

12TD12TD
8 TD8 TD
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DepthDepth

DiameterDiameter

Debris HeightDebris Height

2D Scan 1TD Case for Al
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Scrub Optical Images on Cu at 1 vs 4 TDs

Scrub marks on Cu imaged optically.
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3D Scan for Multiple Touchdowns on Cu

1 TD1 TD 4 TD4 TD

12TD12TD8 TD8 TD
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Summary
 For fine pitch multidut requirements, vertical probe technologies 

provide advantages over cantilever approaches with design 
flexibilities
 MEMS-based vertical technology has an edge over buckling beam technologies 

for design flexibility for highly parallel peripheral devices as well as accuracy of 
scrub signatures required for smaller  pad sizes

 Contact mechanics for MEMS-based fine pitch vertical technology is 
studied on various contact metallurgies. 
 Calculations for scrub depth correlate well for aluminum and copper pad contacts 

in experimental results. It appears that the modeling can also predict contact 
resistance for these pad metallurgies. This allows predictive performance of 
contact pin & pad materials of choice.

 Contact resistance is studied as a function of test parameters. Stable contact 
resistance is achieved for three types of pad/bump metallurgies.

 Initial results were presented for solder bump probing. 
 More scrub analysis and characterization on different solder metallurgies on 

copper pillars are needed. 
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