

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

> June 7-10, 2009 San Diego, CA

50um In-line Pitch Vertical Probe Card

Author: John Wolfe

Texas Instruments-EBT

Co-Authors: Norman Armendariz, PhD and James Tong Texas Instruments-MTI Sato-San Minoru and Fred Megna MJC

Agenda

- Introduction
- Scope
- Test Set-Up
- Test Method
- Evaluation Parameters
- Summary
- Next Steps
- Acknowledgements

Introduction

- TI fabricates devices with ever increasing test point densities at periphery and <u>core</u>, multi-site (x8...x64) tester capabilities and thermal requirements; thus driving the need for advanced probe card technologies.
- For example, TI devices such as embedded processors OMAP[®] have test pads spaced at 50 μm.

June 7 to 10, 2009

Scope

- TI Test Operations and Make Test performed a feasibility or "pathfinding" study of next generation vertical technologies manufactured by MJC.
- This evaluation was performed to understand if the current state-of the art technology (~70um) could be tasked to perform at the next density level (~50um).
- Moreover, the evaluation focused on thermal performance of this technology for the effect of both High (140°C) as well as cold temperature (-40°C).

June 7 to 10, 2009

Test Set-Up

TI-VLCT X1 TESTER / TSK UF3000

MJC VP50 WT Probe Card (Tester Side)

Probe Card Characteristics:

- VLCT Single Site 8" Probe card
- Needle Diameter : 25um (1mil)
- BCF : 2.8+/-1g (80um O/D)
- X Y position: +/-10um Planarity : <30um
- Total Pin counts : Single-Site 315
- Minimum pitch 50um (82 pins/315)

MJC VP50 Probe Head (Wafer-Side)

Test Method

- A single site probe card was fabricated using MJC VP50 technology with Type 1 or hand-wired interconnect technology for a MCT 62 Test Chip Device.
- 5 of the 315 probes from this probe card were selected to be characterized.
- After initial device parameters of interest were characterized at TD = 0 condition, either off-line (Probe Card Analyzer) PCA or on device (tester/prober) the card was then cycled on an Al-wafer for 10 K TDs under power/current.
- After 10 K TDs, the card was again characterized or tested off-line (PCA) and on the device in its test cell.
- This testing and measurement process was repeated every 10 K TDs until 140 K TDs were reached.

June 7 to 10, 2009

Evaluation Parameters

- Lifetime (Wear Rate)
- Alignment (X,Y)
- Planarity (Z)
- CRes
- Leakage
- Yield
- Thermal Performance (-40/140C)
- Scrub Mark Area
- Stepping-Off Wafer

TIP LENGTH METROLOGY

Tip length metrology measurement system using a custom SerTek ® optical microscope with Z-focus vs. height (TPL) measured w/ automated capability.

June 7 to 10, 2009

WEAR RATE: 0 TD-140KTD at 140C

Graph above shows how much actual TIP LENGTH is consumed; measured at intervals of 10K TDs for a total of 140K TDs performed.

WEAR RATE about 0.0010725um /TD. With 120um of available tip length, this projects to a lifetime of about 1.725M TDs.

June 7 to 10, 2009

PROBE ALIGNMENT CAPABILITY

Graph above shows the probe X and Y positional consistency or STD DEV to be < 0.6 um measured with respect to position at 0 K TDs during probing up to 140 K TDs at 140C.

June 7 to 10, 2009

PROBE PLANARITY CAPABILITY

Graph above shows the probe Z or planarity consistency or STD DEV to be < 1.0 um measured with respect to Z position at 0 K TDs during probing up to 140 K TDs at 140C.

June 7 to 10, 2009

Graph above shows the probe card leakage consistency or STD DEV to be no more than 0.2 nA as measured with respect to leakage observed at 0 K TDs during probing up to 140 K TDs at 140C.

June 7 to 10, 2009

VLCT TESTER CRes (140 C)

Yield Data in Production Runs (140C)

Graph above shows the wafer test YIELD consistently > 98%.

June 7 to 10, 2009

Cold Temp Probe -40C API X/YE Err VXErr 🕶 -X-POSITION STD DEV Y- POSITION STD DEV CHANGE (-0.2um) CHANGE (+0.1um) Tukey-Kramer 0.99 Root MSE = 3.176 sqrt(2)q* = 0.018 1401 -0.0 -7.4 7.6 Median Min Max Range Mean StdDev Count Tukey-Kramer 0.99 Root MSE = 2.968 sqrt(2)q* = 0.018 140 1401 Median Min Max Range Mean StdDev 0.0 151 0.0 2.9 I TD C Graph above shows last 140K API run at 140C Graph above shows last 140K API run at 140C to API run after -40C wafer run! YErr API VX3 to API run after -40C wafer run! XErr API VX3 June 7 to 10, 2009 **IEEE SW Test Workshop** 15

Cold Temp Probe -40C API Cres and Leakage at OT

to API run after -40C wafer run! Leakage API VX3

to API run after -40C wafer run! Cres API VX3

Cold Temp Probe -40C Test Data

For Cold Temp wafer yield above the 96% mark. One open Bin during probe! During debug showed icing on the wafer causing a false open fail.

Stepping-Off Wafer Capability

All Probes on Die away from Wafer-Edge Probes contacts Die at Wafer-Edge

Figure shows the relatively very small probe marks < 80um² and that the probes can "step-off" the wafer without affecting the position of adjacent probes, i.e., minimal "mechanical crosstalk"

SUMMARY

WEAR RATE: ~ 0.0010725um /TD or~ 1.725M TDs / PC. **ALIGNMENT:** X and Y positional drift < 0.6 um Std Dev **PLANARITY:** Probe Z ht . Std Dev to be < 1.0 um LEAKAGE: Probe card leakage no more than 0.2 nA **YIELD:** Wafer yield consistently observed > 98% **CRES:** Contact resistance Std Dev < 0.6 ohms **THERMAL:** Capability demonstrated at HT and CT **PROBE MARKS:** Al pad scrub mark areas < 80 um². **STEP-OFF:** Capability of stepping-off wafer demonstrated.

MJC VP50 probe card technology demonstrated capability and feasibility for next generation "fine-pitch" wafer level applications.

To be recommended for the next phase of advanced vertical probe card INTEGRATION or technology and production qualification on actual devices.

Acknowledgements

John Hite

Walter Edmonds

Alan Weglietner

John Campbell

Pedro Cabezas

Robert Davis

Ryo Usui

John Jordan

June 7 to 10, 2009

June 7 to 10, 2009