

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 7-10, 2009 San Diego, CA

Rapid Diagnostics Using a Prober Based PCA

Tools for Verifying Connections

Sammy Mok VeraConnex, LLC

Motivation

- Experienced the challenges of building advanced memory probe cards
- How do you ensure your probe card works in production?
 - Cards in production deflect differently than PCAs
 - Testing at multiple temperatures is required
 - Intermittent connections can not be detected
 - Life testing with relays does not work
- Test solutions get expensive
 - Probe counts 60K+, embedded ICs, card sizes >480 mm
 - Need convoluted test flow with custom developed tools
- Need real time and comprehensive diagnostic tools
- There has to be a simpler solution

Challenges

- Probe cards can generate >200Kg force & every test cell can deflect differently
 - Deflection contributors
 - Prober chuck and head plate
 - Probe cards and their attachment to head plates
 - ATE test head weight
 - Temperature distortion (-45 to +200°C)
- Significantly reduce the cost of test
- How do you test for Cres and electrical planarity with ICs in the way?

Objectives / Implementation

Minimize deflection differences of test cells

- Mount switch electronics on probe card in target prober
- Use ATE suppliers interface kits to attach to head plate
- Use manipulator to support electronics & replicate load
- Perform tests at all required temperatures
- Measure tip positions using scrub marks on blank wafer

Reduce cost of test

- Faster parallel bussed pin testing
- Streamline the test flow keep on one tool
- Minimal cabling and connectors
- Scrub mark damage to replace force measurement

Test through embedded ICS

Any channel can be a logic control channel

Approach

- First target: ATE with large installed base
 - Advantest T5375: 96 ZIF connectors, 440 mm
- Criteria
 - True 4 point measurements
 - Control digital ICs

June 7 to 10, 2009

- High performance: intermittent & life time testing
 - Hot switching & stable ⇒ solid state switches
- Measure passives and relays
- Scalable architecture: start at 65,536 channels
- Thorough self-test: configuration and communication
- Confocal microscope: location & damage = force

Electronics Hardware

 Manipulator to support pin electronics and match load

Prototype:
 Shown directly mounted on head plate of EG prober

Prototype on EG Prober

Cres Testing: Signal Probes

- 4-wire resistance measurement of each probe using probe card
 - Use prober to raise blank metalized wafer in contact with all probes
 - Connect force F+ and sense S+ rails from measurement unit to selected probe
 - Connect force F- and sense S- from measurement unit to several near by probes
 - Voltage across F+ to F- limited to < 50mv to not burn through interface layers

Performance Verification

- Use system to analyze a 64 site LM4 probe card to evaluate tool effectiveness in diagnosing problems
 - Electrical Planarity (on Au and Al wafers)
 - Cres on 100 touchdowns to Au and Al wafer
 - Leakage
- Verify measurement speed
 - More than 300 Cres tests per second
 (Data+Reports for presentation in minutes)
 - Immediate data analysis and capture of images from electrical results

Resistance Repeatability

- Pin Card Measurements with shorting board
 - 100 Measurements are consistent to within 16 mohms
 - Values include: Shorting resistance +Traces + Connector

3X Planarity Results on Au Wafer

3X Planarity on Au Wafer after clean

Animation of Contact Resistance During Planarity Test

Before Cleaning

After Cleaning

154 Test Channels

Individual Pin Cres During Planarity Test (Au Wafer @ 75um OD after 1st touch) (Post clean)

Per Pin Cres Signature over 100 Steps on Au

Per Pin Cres signature over 100 Steps on Al

First Touch Z Sampled During 1 hr Soak

Dynamic First-Touch Z Profiling

Results

- Demonstrated that the system can collect data in minutes and provide immediate analysis
- Fast electronics integrated into prober opens up new methods in diagnosing problems
 - Fast Cres measurements enable collection of individual pin signatures
 - Can identify unique problems despite passing Cres
 - Intermittent Cres can be identified
 - Dynamic planarity behavior of probe card can be observed
 - Integrated real time data analysis help correlate measurements to problem pins

Follow-On Work

- Investigate other signatures
 - Scrub
- Correlation of pin signature to
 - Probe card life
 - Product die test yield

Acknowledgements

- Co-Authors: VeraConnex, LLC
 - Frank Swiatowiec
 - Fariborz Agahdel
 - Bruce Pettyjohn
- Hyphenated Systems, LLC
 - Edward Robinson
- Electroglas, Inc.
 - Steve Martinez
 - Jonathan Halderman
- Aehr Test
 - Chris Buckholtz

