IEEE SW Test Workshop Semiconductor Wafer Test Workshop

Keith Breinlinger FormFactor, Inc.

Addressing the Operating Challenges of Full Wafer Contactors

June 7, 2010 San Diego, CA USA

Outline

Probe cards are really challenging.
SmartMatrixTM &TouchMatrixTM Architecture Introduction
3 really challenging things:

Super Bond Pad
XY Tip Control
Z Tip Control

Conclusion

Probe cards are really challenging.

- A typical sheet of paper is ~100um thick.
- A typical ream of papers has 500 sheets.

100um

- Imagine you need to make an electrical connector to contact the edge of every single sheet in the ream.
- Now imagine the you need to make a connector to contact the edge of every sheet in 100 reams of paper = 50,000 contacts!

 The customer expects to be able to make more than 200,000 cycles on this connector.
 = 10 Million connections!

SmartMatrixTM & TouchMatrixTM Architecture

- Smaller Super Bond Pad
- Faster Soak Time
- Faster Installation Time
- Faster Lead Times
- Excellent CRES
- Wide Operating Temperature Range

FLASH platform TouchMatrix™ Contraction of the second sec

PAGE 4

What is a Super Bond Pad?

Step 1) Make a probe card (assume 50,000 probes)

Step 2) Touchdown on a hot wafer and measure bounding box of every single scrub mark (4 measurements: Top, Bottom, Left and Right)

Step 3) Repeat procedure for a cold wafer

Step 4) Take all 400,000 data points and combine these marks into one "Super Pad". Measure the bounding box. = Super Bond Pad = SBP

<u>SBP Non-Scrub</u> = Tip Width + Tip Width Tolerance + Tip placement accuracy + Scaling Error (Expected Temp x CTE) + Furrow + Prober Alignment <u>SBP Scrub</u> = Tip Length + Scrub Ratio x Overtravel + Tip Length Tolerance + Tip placement accuracy + Scaling Error (Expected Temp x CTE) + Prow + Prober Alignment

Dual Temp Super Bond Pad Capability

Super Bond Bad Performance Dual Temp DRAM Cards (100C-113C Range)

PAGE 6

Capable of 34um x 43um today for 100C dual temp range.

XY Tip position control - Scaling

- Traditional FWC: Probe Card not well matched to silicon wafer
 - Overscaled at hot test
 - Underscaled at cold test
- New Option 1: Dual temperature material
 - Exceptionally well matched to silicon wafer
 - Virtually no hot to cold scaling error.
- New Option 2: Single temperature material
 - True zero soak capability.
 - Ready to probe as soon as the card is loaded

Single and Dual Temperature Options

Single Temp Class I

- Zero Soak – ready to start testing as soon as the probecard is loaded.

- Less than 2um of movement at the edge of the wafer from room temperature to fully soaked.

- Less than 0.5 um of movement at the edge of the wafer during wafer change or lot change

Single Temp Class II

- Quick Soak from 5-30 mins depending on pad size and soak conditions.
- Typically 5-7um of movement at edge of wafer from room temp to fully soaked depending on test temperature

Dual Temp

- Optimized for hot and cold matched systems results in minimal scaling errors.
- Good stability during PMI and wafer changes.

Traditional FWC

- Non optimized material results in overshoot of center of pad.

- Lower thermal mass gets to temp quick but more motion of tips occurs during PMI and wafer changes.

Single Temp versus Dual Temp 6 4 edge of card (um) 2 0 -2 -4 -6 Wafer change -8 position at -10 — Single Temp-Class 1 -12 - Single Temp-Class 2 -14 - Dual Temp 16 -16 Traditional FWC -18 -20 fro -22 Distance -24 -26 -28 0 20 40 60 80 100 120 140 160 180 200 220 240 Time (mins)

Fastest soak & most stable system is Single Temp Class I

Best matched & widest temp range, is Dual Temp

PAGE 8

- Hot and cold touchdowns on one wafer.
- Scrub Marks overlap at center.
- Marks diverge as you get further form center of the wafer.
- Pad damage increases as marks diverge.

Dual Temperature Capability

- Dual temperature material provides exceptional scaling control across entire 300mm array.
- Hot touchdown on wafer.
 Scrub marks are well centered on pads.
- Same wafer cooled to -10C and another touchdown performed. Scrub marks in same position as they were at hot TD.
- Hot and cold marks overlap almost perfectly, minimizing pad damage.

- Step 1) Load a probe card at room temperature into a hot prober.
- Step 2) Make a touchdown immediately (Time 0)
- Step 3) Soak probe card until reaches steady state temperature
- Step 4) Make another touchdown at steady-state
- Step 5) Measure the marks from step 2 and step 4. At each location, calculate the total motion of the probes from time 0 to steady-state.
- Step 6) For each option, plot data as contour plots. Present data at SW Test. SWIW PAGE 11

Z tip control

Translation: When traditional probe cards are heated or cooled they will translate up or down because of the familiar bi-metal effect.

 Bow: The probe array may also be distorted from a perfectly flat plane due to thermal effects

Bow & Translation: Finally the probe array can be translated & distorted from a perfectly flat plane due to probe forces and forces imparted by the tester connections.

Z tip control

- Z translation of the probe card is optimized for each customer's test cell configuration thru careful design and thermal modeling.
- And we control the bow of the probe array from thermal effects to less than 5 microns.

 And we control planarity of all tips to <25 microns even while under load.

COLD -10C – Thermal Bow

PAGE 13

So if you choose a single temperature solution – you can start probing immediately!

Z Performance & Benefits

Minimizing 3 things: Translation, Bow and Planarity results in:

- More uniform scrub marks, minimized pad damage
- Faster soak time using closer proximity soak and/or contact soak.

New Architecture Adoption

 Announced in May 2010, we have shipped more than 100 TouchMatrix and SmartMatrix cards.

- Platform qualified or in qualification at all major DRAM and Flash manufacturers
- Multiple re-orders for many high running designs
- Many cards incorporate advanced tester resource extension electronics (A-TRETM) to increase native parallelism of testers.

Conclusion

- The SmartMatrix & TouchMatrix architecture address three really challenging <u>mechanical</u> things:
 - Super Bond Pad
 - Leading edge scrub capability
 - Minimizes pad damage
 - XY Tip Control
 - Scaling matched to silicon wafers (dual temperature)
 - Zero soak time (single temperature)
 - Thermally stable during wafer & lot change
 - Z Tip Control
 - Improved control of Z motion
 - Allows use of contact soak

There are also really challenging <u>electrical</u> things and <u>MEMS process</u> things that SmartMatrix & TouchMatrix address, but I'll save that for another talk...

Thank You!

