IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 6 to 9, 2010 San Diego, CA

Ultra Low Leakage Probes & Cables For Fine Pitch Probe Cards

Hiroyuki Kamibayashi
Mitsubishi Cable Industries

Agenda

- Introduction
- Need for superior quality coated probes
- Advantages of MEXCEL electro-deposited polyimide coatings
- Need for super-fine coaxial cable products
- Advantages of Mitsubishi ultra miniature coaxial cables
- Summary

Mitsubishi Product Divisions

Cable Division

Electric wires and cables, high frequency cables

Instrument Components Division

 Seals, rubber products, engineering plastic products, metal products, OA equipment, electromagnetic wave absorbers, MEXCEL products.

Car Electronics and Optics Division

 Automotive wire harnesses, connectors, gaskets, data link and optic devices, optic fiber bundles, optical large core fibers

World Network

PART 1

 This section features the MEXCEL coating process developed by Mitsubishi's Instrument Components Division

 This process can be used to advance performance of fine-pitch coated probes.

Need for Superior Quality Coated Probes

- High resistance for low leakage applications
- High breakdown for high voltage applications
- Coating must be tough, peel resistant, and withstand high temperatures
- Coating must be thin for tight pitch applications and free of pin hole defects
- Barrier to corrosion, chemicals & Moisture

The MEXCEL Coated Probe

- Polyimide is applied by a patented electro-deposition process
- Much superior to dip-coatings or the use of polyimide "sleeving"
- Tight control over thickness and uniformity
 - Coatings from 1 micron to 100 microns thick
 - Uniformity better than 5%
 - Free of bubbling and pin holes

MEXCEL Manufacturing Method

Material: Polyimide

Thickness: 1 to 100µm

Coating Length: As you like

Thickness is Tightly Controlled

MEXCEL Cross-section & Flexibility

Cross-section

Flexibility

The uniformity of the coating and ability to withstand extreme flexing and bending is ideally suited for the abuse probe needles experience.

MEXCEL Coating Breakdown Voltage

A 10 micron coating reliably exceeds 1KV AC breakdown. For fast pulse ESD applications the expected breakdown is 4x higher.

Other Applications

Thermistor

Planar Transformer

High Inductance Planar Coil

Pipe

Spring

PART 2

 The section features ultra miniature coaxial cable developed by Mitsubishi's Cable Division.

 Original developed to advance miniaturization of mobile products, these cable are well suited for use in many probe card applications.

Need for Super-Fine Coaxial Cable Products

Ultra low leakage DC applications

 Driven guard eliminates probe capacitance allowing much faster settling time fA-level measurements

Controlled impedance RF applications

- Miniature 50-ohm flexible probes are possible using tungsten wire as the inner conductor.
- These can help solve routing problems in tight pitch applications where flexibility is an issue

Construction of Ultra Miniature Coaxial Cable

Insulation

Outer Conductor

Jacket

Only 210 micron outside diameter! (8.3 mils)

Item	Construction	O.D (µm)
Inner Conductor	Gold plated tungsten	50
Insulation	Fluororesin	-
Outer Conductor	Tin plated copper alloy	190
Jacket	Polyester	210

Impedance of Ultra Miniature Coaxial Cable

Characteristic impedance (TDR) of 50±3 ohms can be achieved with 210 µm in overall diameter.

Ultra Miniature Coaxial Cable Handles 8KV ESD Pulse

This cable/probe allows flexible routing of ESD pulse waveforms in fine pitch applications.

Construction of Mini Low-Loss Cable

Inner Conductor

Insulation

Outer Conductor

Jacket

Item	Construction	O.D (µm)
Inner Conductor	Silver plated copper	240
Insulation	Fluororesin	-
Outer Conductor	Silver plated copper alloy	710
Jacket	Fluororesin	810

Flexible low-loss cable is 810 µm O.D. (31.9 mils)

Attenuation of Mini Low-Loss Cable

VSWR of Mini Low-Loss Cable

Other Mini Low-Loss Cable Applications

Summary

- Electro-deposition produces superior coated probes
 - MEXCEL coatings can advance tight pitch probing application
 - They extend probing at high temperatures and voltages
- New miniature coax cable advances signal technology
 - Cross sections in 200 micron are now possible
 - Wide bandwidth, temperature, and voltages are achievable

Next Step

- These advance technologies require partnerships
 - Mitsubishi Cable Industries wishes to partner with probe card vendors and/or end users to provide custom solutions for the semiconductor wafer test industry.
- Custom probe coatings and cables
 - In the US, please contact
 Mitsubishi Cable America
 3333 Bowers Avenue, Suite 251
 Santa Clara, CA 95054
 408-486-9915
 Yutaka Ikeda
 ikeda@mcausa.com

