Novel Vertical MEMS Probe Card for High Speed Devices

John Lee
GigaLane Co., Ltd

Behrouz Sadrabadi
Qualmax, Inc.
Agenda

- Outline

- Structure of “G-probe” Probe Card
 - MEMS Guide Probe block
 - Hybrid Space Transformer

- “G-probe” Probe Card Example
 - 1Para Wide I/O Memory
 - 16 Para Media SOC
 - Concept of block array for the multi-parallel test

- Summary
Challenges and Remedies

- Covering different pad arrays (LOC, Peripheral, Area) & fine pitch.
- Having the best and high accuracy of probe positioning.
- Having solution to make easy multi parallel testing.
- Making the low cost probe card.

- Small & thin probe tip
- Using Si wafer instead of ceramic guide
- Hybrid space transformer without MLC
“G-probe” Probe Card Structure

Main PCB + Interposer + Space transformer assembly

Cover frame

MEMS Probe block

Probe block + Cover assembly

Hybrid Space transformer
Interposer
Frame middle
Main PCB
Stiffener

“G-probe” Probe Card
MEMS Probe Guide

- 8” wafer etching (Deep RIE, Reactive Ion Etching)

- 500um thickness wafer thru hole etching
- Guide hole dimension accuracy: ±0.5um
- Guide hole position accuracy: ±0.5um
- Guide position accuracy after bonding: ±1.5um
- Scallop pattern of submicron
- Possible to etch the hole on both top and bottom side
- CTE matching with device by using Si wafer guide
Probe Tip

- **G-Probe** is a vertical probe, made by electroforming
- **Planar 2D**, Covers fine pitch
 - 20um pin thickness
 - Pitch, Inline: 40um, staggered: 20um, WLCSP: 130um
- **Force**
 - Cobra type: 5gf @ 70um travel
 - Spring type: 1gf @ 50um travel
- **Good pointing accuracy** by limited guide
- **Covers LOC, peripheral, area pad arrays**
- **Small scrub** limited by MEMS guide
Test Equipment

- Tester: HP 8510C Vector Network Analyzer
- Test Jig: UTF (Universal Test Fixture)
- Test pin: G-probe Cobra type, 80um pitch
- Pin array: GND-Signal-GND, GND-Signal
Test Data

- Tip insertion loss (80um pitch, Probe Height: 2.93mm)
 - GSG type : 1.1dB @1GHz
 - GS type : 0.9dB @1GHz
- G-probe Model : 2.2nH High-Q inductor
- Good performance compare to cantilever type (GHz VS. MHz)
Probe Specification

- **Thickness scatter**
 - 21~22um
 - 19~20um
 - 20~21um

- **Probe tip pointing accuracy**: ±0.5um
- **Probe thickness**: 20um ±1.0um (>90% within 8” area)
- **More than 20K probe tip within 8” area using electroplating process**
- **Low cost and easy fabrication process**
Space Transformer

- Hybrid space transformer construction
 - Si Wafer, rigid PCB, FPCB
- Fine-pattern process (width 10um, space 10um)
- Multilayer, Ø10um small via process
- CTE matching with device because of using Si wafer
- Low cost and fast delivery
G-probe Example 1

- Application: Wide I/O Memory Bump
- Device pitch, X:50um, Y:40um
- Ball Bump Size: Φ 20um
- 1-PARA / 200 Probes
- Probing pitch, X: 50um, Y:120um
- Pointing accuracy: ± 3um, Planarity: ±2um
G-probe Example 1

G-probe Position Scatter & probing mark
G-probe Example 2

- Device: Media SOC
- I/O Pad configuration: Peripheral in-line
- Pad pitch: 50um
- Probe block area: 50.72*20.57=1043.3mm²
- Pin count: 213x16=3408 probes
- Probe card interface: Teradyne UltraFlex™
- Array:

[Diagram showing a circuit board with labels for Relay, R, L, C]
G-probe Example 2

- G-probe wafer test Map
- Shmoo for the BIST

<table>
<thead>
<tr>
<th></th>
<th>4Para</th>
<th>16Para</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test yield</td>
<td>79.9%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Open fail</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Logic</td>
<td>3.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>BIRA</td>
<td>2.2%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Etc.</td>
<td>14.7%</td>
<td>14.6%</td>
</tr>
</tbody>
</table>

- Probe Card
 - 4Para Cantilever
 - 16Para G-probe
- Measure yield & shmoo with same wafer
- Better shmoo performance than cantilever
- Same Test Yield
G-probe Example 2

- 3408 probes positioning error < ±10um
G-probe Example 3

- **Advantage of block array “G-probe” probe card**
 - Easy repair & assembly
 - Easy block array for the multi parallel test
 - Good CTE matching by using Si wafer for making UPB & reference align block
G-probe Example 3

- 9600 probes positioning error < ±10μm
G-probe Example 3

- Temperature test at 90°C

- Probing area: 60,700um*121,400um
- Probe tip size: 15~18 um
- Pad size: 70um*70um
- 6 times touch down for 1hr at 90°C after initial probing (at room temp.)
- Good CTE matching
Summary

• Novel vertical MEMS probe card
 – Overcomes constraint of traditional vertical probe card
 • Fine pitch: Inline 40um, Staggered 20um, Area 130um
 • Pad array: LOC, Peripheral, Area (WLCSP)
 – MEMS guide
 • Good position accuracy
 • CTE matching with device wafer
 – Hybrid space transformer
 • Low cost & fast delivery
 • CTE matching with MEMS probe block
 – Great multi parallelism solution
Thank You!