Keynote Speaker

"Emerging High Density 3D Through Silicon Stacking (TSS) – What's Next?"

Matt Nowak

Senior Director Advanced Technology Qualcomm CDMA Technologies

June 10 - 13, 2012

IEEE Workshop

8

Emerging High Density 3D Through Silicon Stacking

-What's Next?

Matt Nowak Senior Director Advanced Technology

Emerging High Density 3D Through Silicon Stacking *What's Next ?*

Outline

Applications and Motivations

Technology Status & Progress

Key Challenges

Conclusions

2.5D / 3D TSV Stacking : Everybody is Doing It

<u>Sector</u>	<u>Company</u>
	Samsung
	Elpida
Memory	Hynix
	Micron
	tsmc
Foundry	Global
	UMC
ORAT	Amkor
OSAT	ASE
CPU/GPU	Intel
	AMD
	IBM
	nVidia
FPGA	Xilinx
	Altera
	STM / STE
Mobile	П
	Intel
	Samsung

Have All Talked about Activities in 2.5D and/or 3D Domains During 2011- 2012

© 2012 QUALCOMM Incorporated. All rights reserved

2.5D / 3D TSV Stacking : Everybody is Doing It

<u>Sector</u>	<u>Company</u>
	Samsung
Mamani	Elpida
wemory	Hynix
	Micron
	tsmc
Foundry	Global
	UMC
OPAT	Amkor
USAT	ASE
	Intel
CRUVCRU	AMD
CFU/GFU	IBM
	nVidia
FROM	Xilinx
FPGA	Altera
	STM / STE
Mahila	П
woble	Intel
	Samsung

TSMC reveals plan for 3DIC designs based on Silicon interposers & TSV	
Jun 22rd, 2010 Elpida, PTI & UMC to partner for 3DIC commercialization of Logic+DRAM stacks by 2011	Nilinx
S ADVARCED FACKACIARS 3D IC, WCF & TSV Oct 27th, 2010 Xilinx brings 3D TSV interconnects to commercialization phase in digital FPGA world	HMC HMC Logic Controller chip (IBM)
ADVANCED RACKAGING: 30 IC. WUP & TSV Sep 17th, 2010 SDIC memory with wide I/O interface is coming by 2013 says NOKIA Feb 10th, 2011 Feb 10th, 2011	
Micron reveals "Hyper Memory Cube" 3DIC Technology S ADVANCED PACKAGING: 3D IC, WIP & TSV Feb 28th, 2011 Samsung Wide IO Memory for Mobile Products - A Deep	[2 stacked WIDE ID PKG] Samsung
ADWINGED INCOMPAGING: 20 IC, INLP & TSV Jun 28th, 2011 Elpida begins sample shipments of DDR3 SDRAM (x32) based on TSV stacking technology	ELPIDA ISANA FORM JAPAN
> ADVANCED PACKAGING: 3D IC, WLP & TSV Dec 7th, 20 STMicroelectronics' TSV middle for advanced 28nm So unveiled	Elpida F2B Currinars
JEDEC Publishes Breakthrough Standard for Wide I/O Mobile DRAM	Webs 8D DRAM

© 2012 QUALCOMM Incorporated. All rights reserved

TSV mid AR 811-1011

de Cu-Pillars

Some of the Current Hi Density 2.5D/3D Applications

High Density = 5-10um dia vias, ~10:1 AR, 1K-10K's TSVs and ubumps, 10's um pitch ubumps

2.5D	Side by side die stacked on a passive <u>interposer</u> that includes TSVs	
3D Memory	Multiple DRAM die stacked standalone or on an active interposer	
3D Memory on Logic	One or More DRAM die stacked directly on logic die (<u>M-0-L</u>) (or L-O-M for high power processors)	

What's Next?

2.5D	Side by side die stacked on a passive <u>interposer</u> that includes TSVs	
3D Memory	Multiple DRAM die stacked standalone or on an active interposer	
3D Memory on Logic	One or More DRAM die stacked directly on logic die (<u>M-0-L</u>) (or L-O-M for high power processors)	
3D Logic on Logic	Multiple logic die stacked on top of each other (<u>L-o-L</u>)	
3D + Interposer	Mix of side by side and stacked schemes with a passive or active interposer	

© 2012 QUALCOMM Incorporated. All rights reserved

High Density Through Silicon Vias: Motivation

Semiconductor future will be a series of disruptive technology changes

end of conventional CMOS scaling but continue Moore's law with new devices

High Density Through Silicon Vias: Motivation

Semiconductor future will be a series of disruptive technology changes

- end of conventional CMOS scaling but continue Moore's law with new devices
- diminishing of the traditional 29% per year cost reduction megatrend

Relative Cost per Gate (Log Scale)

High Density Through Silicon Vias: Motivation

Semiconductor future will be a series of disruptive technology changes

- end of conventional CMOS scaling but continue Moore's law with new devices
- diminishing of the traditional 29% per year cost reduction megatrend
- increasing impact of "More than Moore" functionality

The game is changing.....

High Density 3D TSS provides a platform to navigate these disruptive changes

High Density Through Silicon Stacking (TSS) Motivations common with CMOS scaling

- Performance enhancement
- Improved power efficiency
- Form factor miniaturization
- Cost reduction

Could 3D TSS fulfill these needs if CMOS scaling slows due to lithography cost?

© 2012 QUALCOMM Incorporated. All rights reserved

Value Proposition : Power – Performance

For Example : Wide IO Memory

Wide IO Memory Inherently Superior Power Efficiency

Increasing advantage with increasing Bandwidth demand

Value Proposition : Power – Performance

For Example : Wide IO Memory

- Wide IO Memory Inherently Superior Power Efficiency
 - Increasing advantage with increasing Bandwidth demand
- Wide IO Memory Inherently More Scalable to Higher Bandwidths
 - Wide IO : SDR @ 200MHz => SDR @ 266MHz => DDR => overclocked DDR ...
 - DDRx: LPDDR @ 800 MHz => 1000 MHz + and/or Low Voltage Swing

Value Proposition : Power – Performance

For Example : Wide IO Memory

Wide IO Memory Inhere.

- Increasing advantage with increasing Bandwidth ...
- Wide IO Memory Inherently More Scalable to Higher Bandwidths
 - Wide IO : SDR @ 200MHz => SDR @ 266MHz => DDR => overclocked DDR ...
 - DDRx : LPDDR @ 800 MHz => 1000 MHz + and/or Low Voltage Swing

Value Proposition : Form Factor

3D vs. 2D Scaling

Value Proposition : Form Factor

3D vs. 2D Scaling

Transistors per unit package volume

Value Proposition : Cost

Is TSS Cheaper than Conventional 2D SoC?

Yes – early in N+1 node availability and for larger die sizes

More Savings Possible if :

- Consider lower cost reduction from 2D scaling
- Split large 2D SOC at N+1 node into multiple smaller N+1 die
- Or if mix 'n match technology nodes with 2-chip TSS stack
 © 2012 QUALCOMM Incorporated. All rights reserved

Emerging High Density 3D Through Silicon Stacking *What's Next ?*

Outline

Applications and Motivations

Technology Status & Progress

Key Challenges

Conclusions

3D TSS: Three Major Process Modules

TSV Formation (via middle)

© 2012 QUALCOMM Incorporated. All rights reserved

Backside Processing and Chip Stacking Die to Substrate Flow

High Density TSV Processes Demo'd Cu ECD Fill

Source by permission: IMEC/ERIC BEYNE

Qualcomm TSS Integrated Demonstrators

Fine Pitch Microbump Assembly

Tier-1 C4 bump joint quality

3D TSV Reliability Progress

Intrinsic Reliability Data Collected

- TSV: Cu pumping mitigation solutions
- TSV leakage reduced
- Microbump: EM no worse than C4
- Package: HAST/TC/HTS passed JEDEC spec

Snapshot of Intrinsic Technology Status

	Was (common concern a few years ago)	Is (our take)
Process	High aspect ratio (10:1) 5/50 TSV process	\checkmark
	Thinning & Backside wafer processing	\checkmark
	Microbump and Joining	\checkmark
	Integration & Stacking	\checkmark
	Intrinsic Reliability Assessment	🖝 in flight
	Standards (JEDEC, SEMI, Sematech, 3D EC,)	🖝 in flight
Design (M-o-L)	Design Enablement (for "2D-like" Memory-on-Logic design)	\checkmark
	Variability (Corner for "2D-like" Memory-on-Logic design)	\checkmark
	EDA tools (for "2D-like" Memory-on-Logic design)	 mostly
	Testability (for "2D-like" Memory-on-Logic design)	🖝 in flight
Product	Stress Modeling & Design for Stress	🖛 in flight
	Thermal Modeling & Design for Thermal	🖝 in flight
	Cost Structure & Business Models	🇨 TBD
	Yield and Yield Learning	TBD
	Volume Manufacturing Ramp	● * TBD
	ncorporated All rights received	26

TSS Technical Challenges

- Most often mentioned
 - Reliability
 - Thermal
 - Design tools and flows
 - Thin wafer handling
 - Mechanical stress effects
 - Test/DFT
 - Inspection & metrology

Considerable progress and knowledge building to date on all these

Mechanical Stress: Avoiding the "Perfect Storm"

Mechanical Stress: Avoiding the "Perfect Storm"

Impact of TSV Stress on Neighboring Transistors

Manage Cu Grain Growth to Mitigate Cu Pumping

Electron Backscatter Diffraction Images showing TSV grain texture change with anneal temp

P. Ho et al , U Texas 2012 Austin 3D Workshop © 2012 QUALCOMM Incorporated. All rights reserved

Grain Growth with Temperature:

32

New Fault Mechanisms – TSV Formation

si	• F
	• F
Scallona	
280nm](72nm	Image: Nakamura, 3DIC2011

- Poor TSV etch profile
- Poor liner/barrier/seed sidewall coverage of scallop underside & TSV bottom
 - Results in liner leakage, Cu diffusion into silicon, poor Cu fill, liner cracking

Submicron Cu voids

New Fault Mechanisms - Stacking

 No-flow underfill (NUF) trapped in microbump joint

 Thin wafer and die subsurface micro-cracks

Concerns in Managing 3D TSS Mechanical Stress with Test/DFT

The impact is parametric thus the tests required are AC
AC Tests can be expensive

CPI Stress is a systematic mechanism and thus not random

- Location dependent on package design and component placement
 Circuit sensitivity plays an important role
- Increasing AC Fault Coverage in Production Test is Inefficient
 For a given device/design problem areas are not random and will not change

Managing Mechanical Stress at Test/DFT – What Can We Do? A Few Ideas

- Utilize Stress Models/Checks to predict stress hot spots and note which IP/Blocks are nearby
- More extensive AC test suite for Device Characterization
 - Target High Stress Areas and Sensitive IP/Blocks
 - Test at Cold Temps and possibly Hot (cold is usually WC for package stress)

If warranted select a small subset of AC tests to add to production test

Tests that have shown a stress sensitivity in characterization

Look for possible interactions with other mechanisms

- Eg. Thermal Hot Spots could interact with Stress

Think Outside the Vector Box

Opportunity for new test techniques

Conclusions: What's Next?

- The semiconductor game is changing
 - rising cost of lithography-driven CMOS scaling
 - architectural differentiation from packaging
- 3D chip stacking using TSVs offers a new bag of tricks for chipset architects
- Development of high density TSV technology and associated industry infrastructure has considerable momentum
- Memory stacking and 2.5D interposers, then LOL and 3.5D

Many TSS challenges and opportunities to keep us busy © 2012 QUALCOMM Incorporated. All rights reserved