Quantifying the Impact of the Environment on PCB Transmission Lines

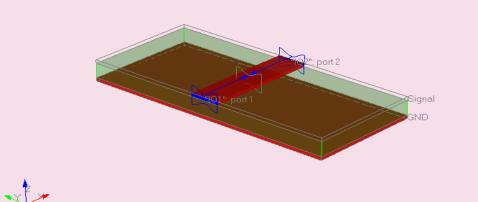
Zaven Tashjian President, Circuit Spectrum, Inc.

Kevin Chan Applications Engineer, Circuit Spectrum, Inc.

June 10 - 13, 2012 | San Diego, California

Introduction

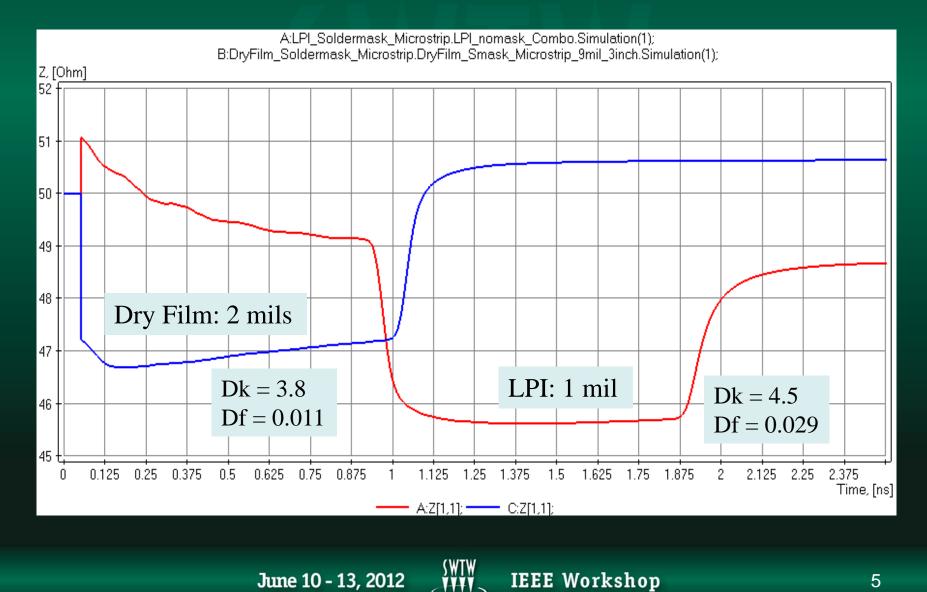
In the world of PCB design there are nonnegotiable as well as unintentional and inadvertent conditions and situations that can impact signal and power integrity. Power integrity is outside the scope of this presentation. We have selected a few cases that can exist in the environment of transmission lines and we will present frequency-domain and time-domain results of their impact.


Outline

- Covered microstrip and embedded microstrip
- Voids in reference planes
- Line neckdown due to space constraints
- Excess floating metal in the vicinity
- Parallel conductor crosstalk
- Ultimate goal: Full signal path assessment
- Concluding remarks

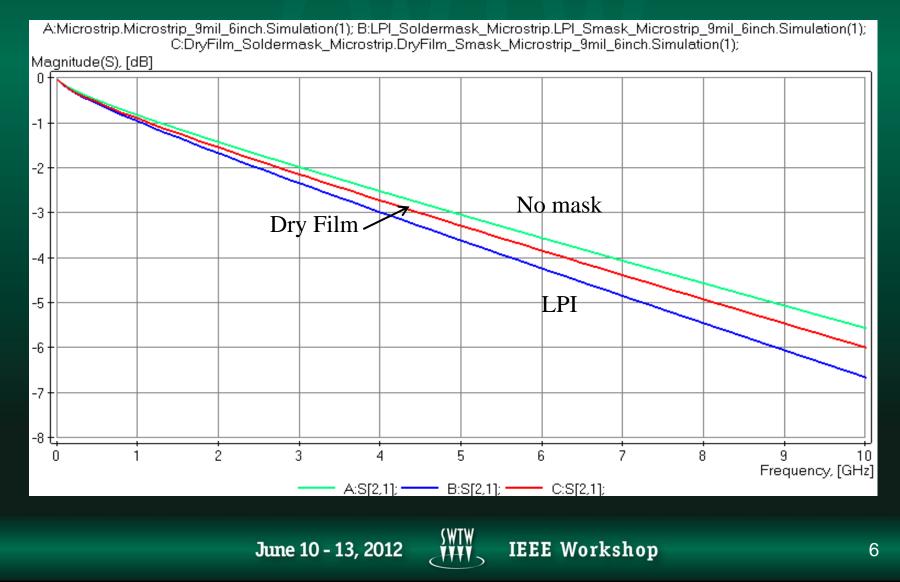
Microstrip vs. embedded microstrip

Contrast between uniform and nonuniform microstrip

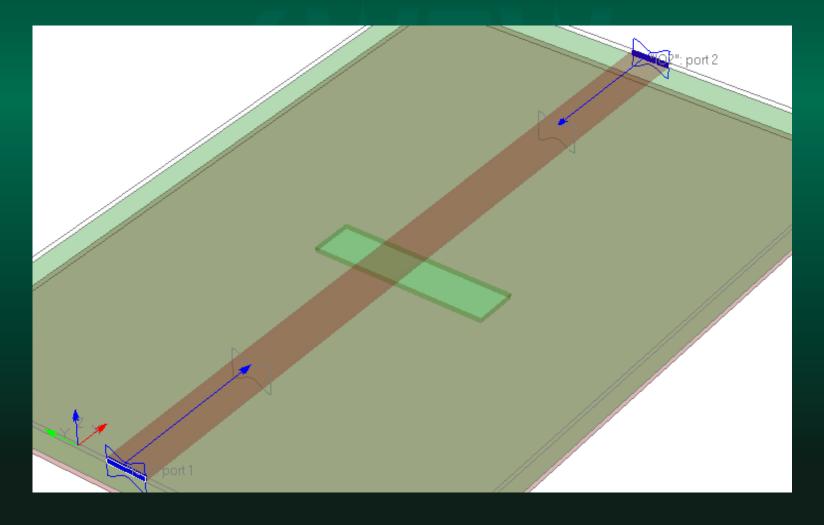

3D View Mode (press <E> to Edit).

Embedded microstrip

June 10 - 13, 2012

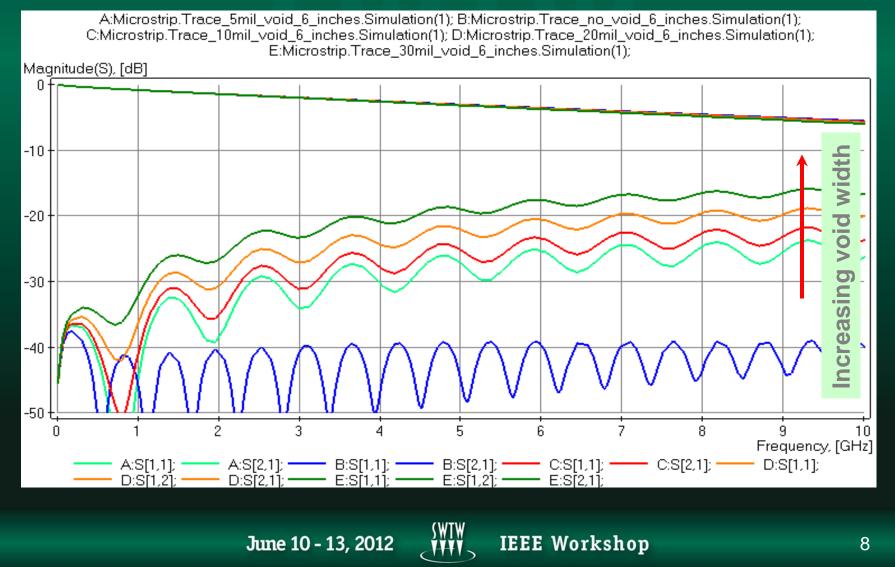


TDR data contrasts

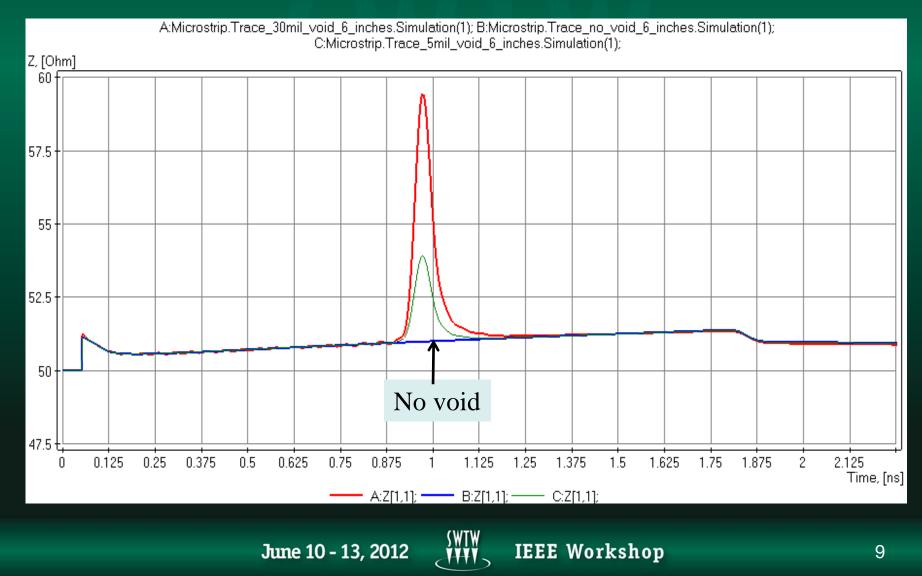


June 10 - 13, 2012

Insertion loss as a function of soldermask type

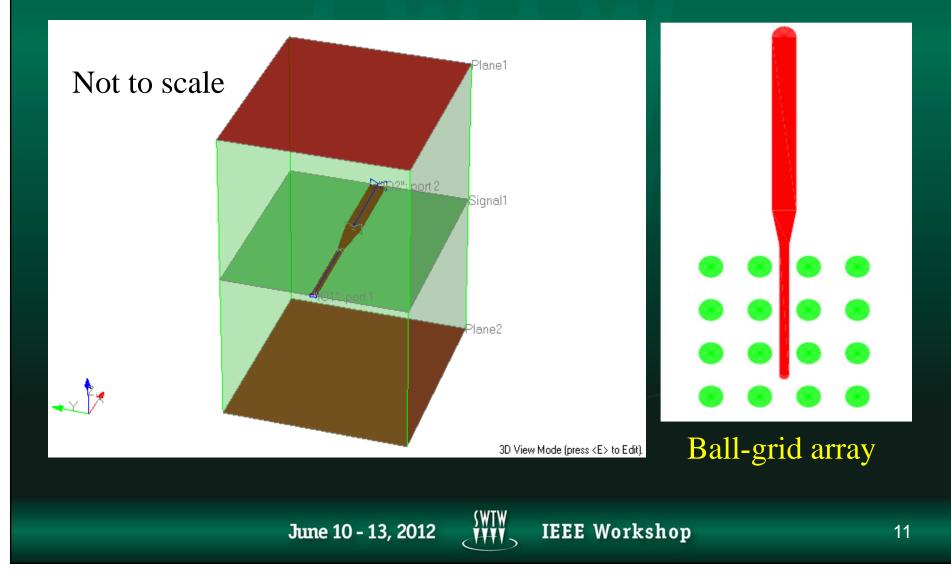


Void in reference plane

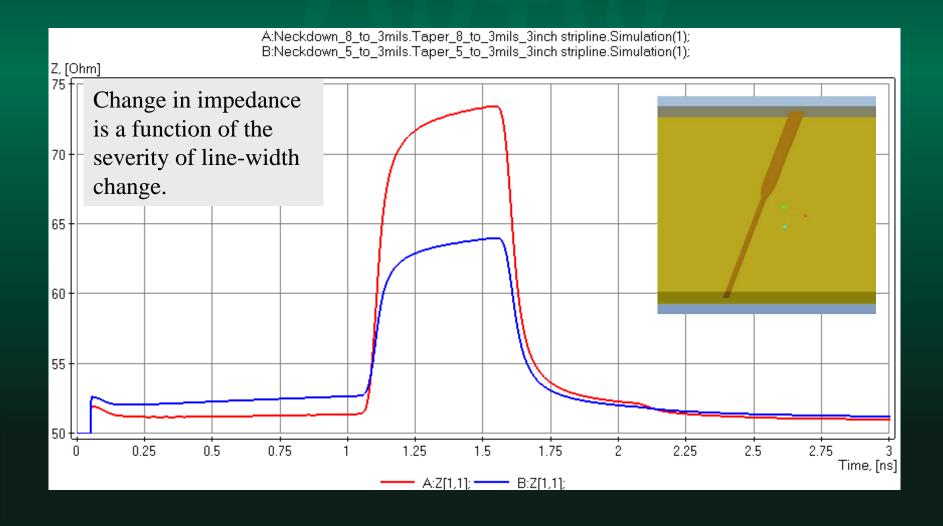


Insertion loss and return loss as a function of void in reference plane

TDR data as a function of void in reference plane

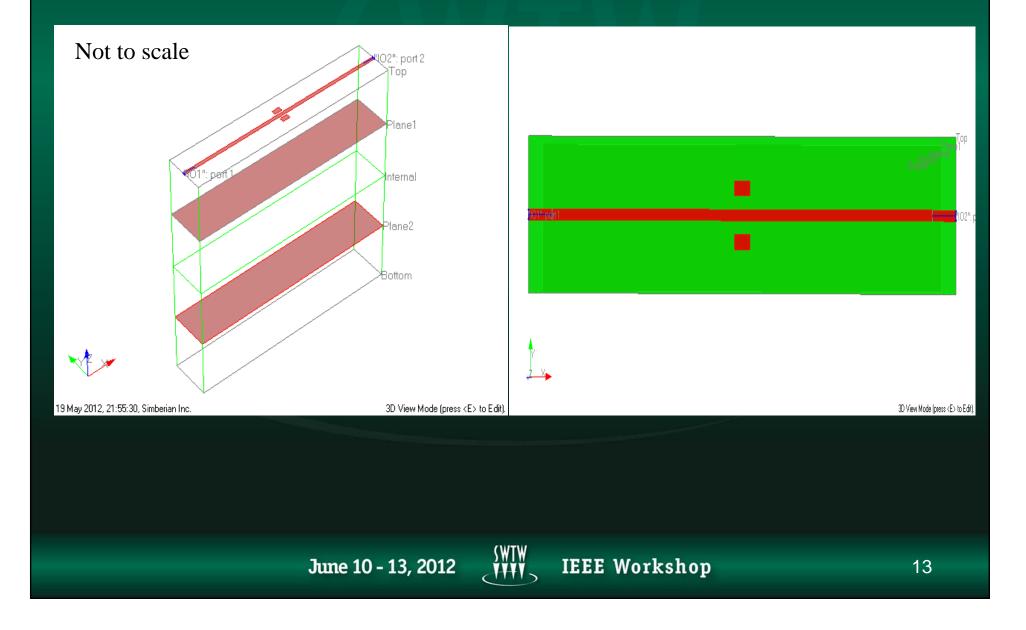


A	ppli	cati	on-m	andate	ed vo	oid	in			
reference plane										
DDR	4 RDIN	мM			1		1			
VSS	54	196	CB7							
CB2	55	197	VSS		_					
VSS	56	198	CB3							
RESET#	57	199	VSS							
VDD	58	200	CKE1							
CKE0	59	201	VDD		1000					
VDD	60	202	RFU		99	8	9			
ACT#	61	203	VDD			A	170			
BG0	62	204	BG1	0000						
VDD	63	205	ALERT#	nonon.		~ ·		0.50.5		
A12	64	206	VDD							
A9	65	207	A11	~100 cc				100		
VDD	66	208	A7							
A8	67	209	VDD							
A6	<mark>6</mark> 8	210	A5							


June 10 - 13, 2012

The necessity of line neckdown

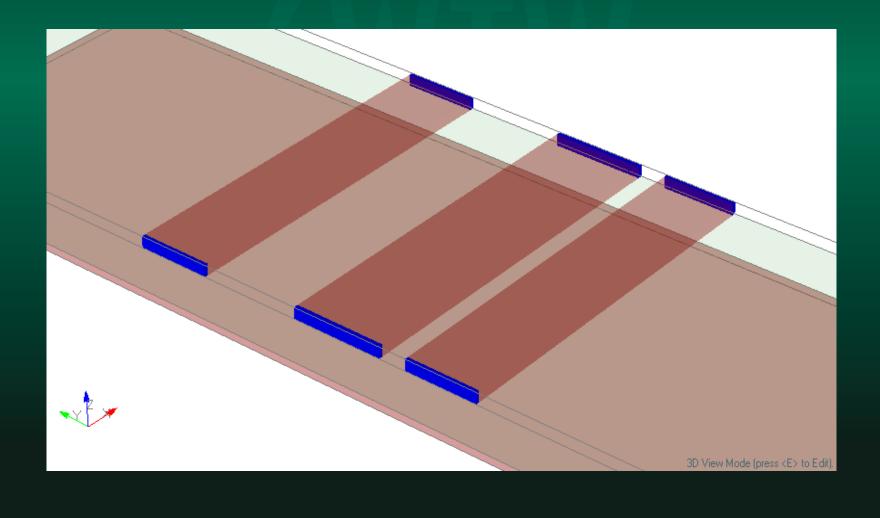
Space constraints lead to the use of neckdown



TDR data for necked down lines

June 10 - 13, 2012

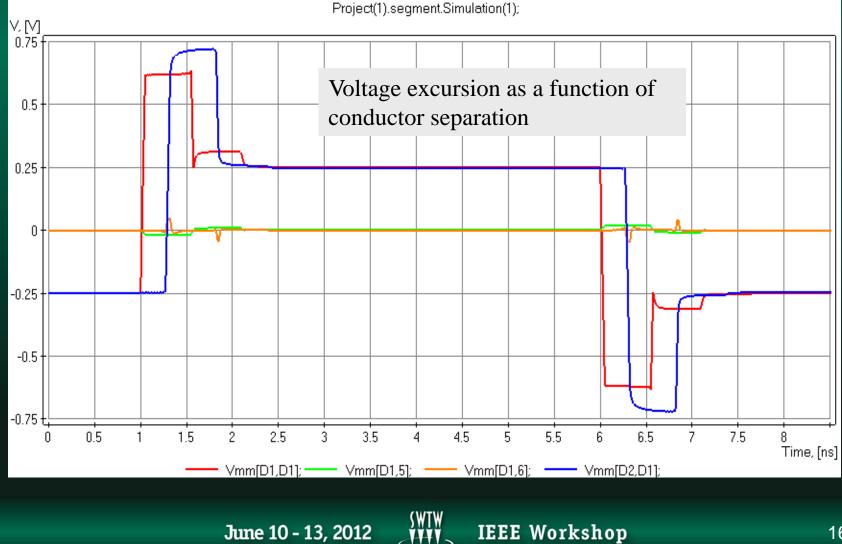
Stray floating conductor in the vicinity



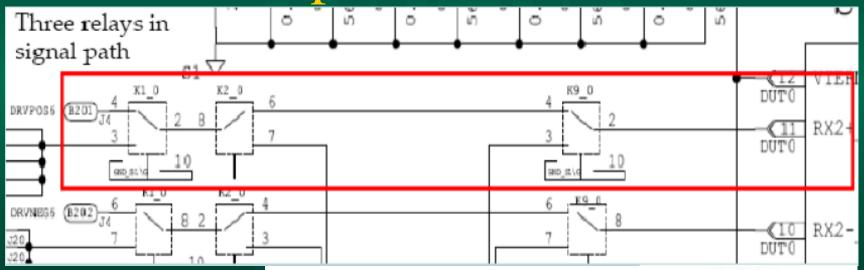
Impact of floating conductor by TDR

14

Parallel conductor crosstalk



SWIW


June 10 - 13, 2012

Time-domain data for parallel conductors

Full signal path assessment for a 2-port network

.....

	1	GWN	.S2P	test	clata	output	tie C	G-S-G)	configuration
	1	S11	S21	S-12	522				
	1	symbol	freq-unit	parameter-	data-format	keyword	impedance	ohms	
	#	GHz	S	MA	R	50			
	1.99E-01	2.39E-02	-9.73E+00	9.94E-01	-1.71E+00	0.99449	-1.7138-67	0.01954	-8.47E+00
	3.99E-01	2.46E-02	-1.42E+01	9.94E-01	-2.56E+00	0.994195	-2.562622	0.019885	-1.25E+01
	5.98E-01	2.58E-02	-2.08E+01	9.94E-01	-3.83E+00	0.99374	-3.8302	0.020508	-1.84E+01
	7.97E-01	2.75E-02	-2.68E+01	9.93E-01	-5.09E+00	0.993225	-5.0896	0.021345	-2.41E+01
	9.96E-01	2.96E-02	-3.22E+01	9.93E-01	-6.33E+00	0.9925/61	-6.333.74	0.022397	-2.94E+01
	1.20E+00	3.21E-02	-3.71E+01	9.92E-01	-7.57E+00	0.991837	-7.565674	0.023666	-3.45E+01
	1.39E+00	3.50E-02	-4.15E+01	9.91E-01	-8.78E+00	0.990954	-8.779785	0.025139	
	1.59E+00				-9.98E+00	0.990062	-9.9785-16	0.026817	-4.37E+01
Courtesy Johnstech	1.79E+00	4.17E-02	-4.91E+01	9.89E-01	-1.12E+01	0.989025	-11.16113	0.028683	-4.78E+01
	1.99E+00	4.55E-02	-5.25E+01	9.88E-01	-1.23E+01	0.9880/04	-12.325.68	0.030732	-5.117E+01
International	2.19E+00	4.96E-02	-5.57E+01	9.87E-01	-1.35E+01	0.986935	-13.468.26	0.032922	-5.53E+01
International	2.39E+00	5.40E-02	-5.87E+01	9.86E-01	-1.46E+01	0.985919	-14.583-01	0.035251	-5.87E+01
	2.50E+00	5.86E-02	-6.15E+01	9.85E-01	-1.57E+01	0.984903	-15.67383	0.037702	-6.20E+01

SWIW

June 10 - 13, 2012

IEEE Workshop

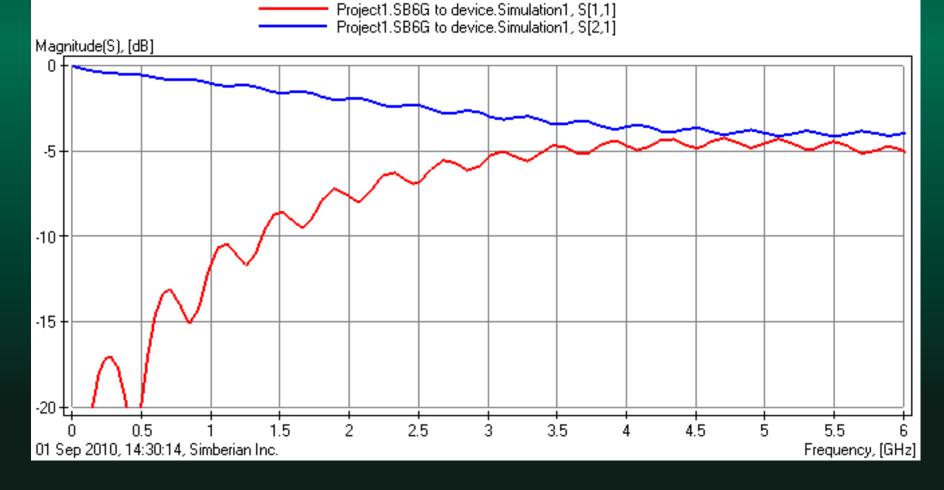
-

Relays in signal path

6.5 GHz bandwidth for RF and Pulse switching (fast rise time pulses)

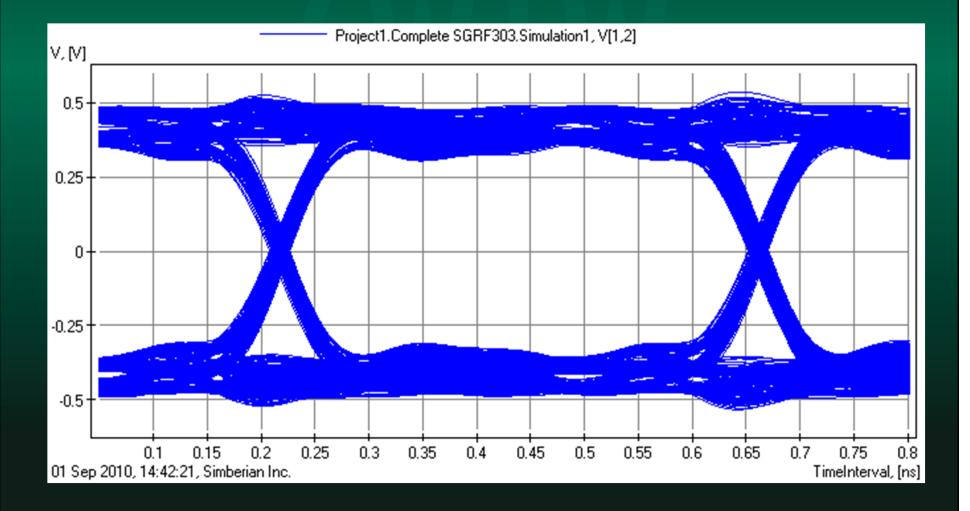
Option 1: No S-parameters available

! Network Analyzer HP8722D.07.74: Oct 30, 2002 Serial No. US36140486										
! Hewlett-Packard										
! 20 May 2008 16:43:04										
! Frequency S11		S21		-	512	S22				
# HZ S DB R 50	# HZ S DB R 50									
50000000 -40.412	2 -53.089	0296	8280	0579	9118	-42.16 -2	29.09			
99750000 -39.6	-54.597 -	0546 ·	-1.4639	0587 ·	-1.4543	-38.359 ·	-61.581			
149500000 -35.17	12 -79.238	0537	-2.0517	0682	-1.9968	-35.655	-78.249			
199250000 -33.69										
249000000 -31.61	.2 -100.55	0718	-3.1805	0845	-3.1421	-31.722	-99.451			
298750000 -30.40	51 -108.37	0924	-3.6626	0722	-3.5829	-30.352	-108.51			
348500000 -28.95	54 -118.87	0550	-4.3327	0685	-4.3643	-29.031	-117.2			
398250000 -27.92	26 -126.49	1118	-4.8093	1133	-4.7749	-27.805	-124.88			
448000000 -26.79	-135.42	0569	-5.4108	0555	-5.2652	-26.808	-132.38			
497750000 -26.09	92 -141.87	0903	-5.9203	1151	-6.14	-26.037	-139.73			
547500000 -25.08	39 -149.09	0456	-6.6975	0776	-6.2073	-25.056	-147.08			
597250000 -24.50	3 -155.9	1358	-7.0601	0350	-7.2084	-24.52	-153.75			
647000000 -23.85	53 -163.6	0212	-7.744	1133	-7.8662	-23.969	-160.74			
696750000 -23.35	59 -170.09	1264	-8.3922	0556	-8.0516	-23.467	-167.6			
746500000 -22.79	92 -177.47	0465	-9.1296	0729	-9.4263	-22.947	-174.93			
796250000 -22.51	176.28	1304	-9.337	1542	-9.3672	-22.525	179.3			
846000000 -22.17	169.62	0188	-10.418	0317	-9.9646	-22.266	172.22			
895750000 -22.19	164.78	1633	-10.808	1200	-11.041	-22.291	165.51			
945500000 -21.88	158.81	0738	-11.324	0944	-11.076	-22.042	158.85			


Option 2: Courtesy Teledyne

June 10 - 13, 2012

SWTW TTTT


Frequency-domain results for signal path

ŚWTW

June 10 - 13, 2012

Time-domain results for signal path

ŚWTW

IEEE Workshop

June 10 - 13, 2012

20

Concluding remarks

It is informative to quantify the effects of individual isolated elements in the environment on the signal path. Ultimately, one would still need to characterize the entire signal path with all factors taken into account before deciding if a particular design will satisfy the stated objectives and thus move forward to manufacturing. Fortunately, there are tools to help us make such decisions whether they concern signal integrity or power integrity.

