

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 9 - 12, 2013 | San Diego, California

Effect of Wide Pitch at mmWave Frequencies and Design Recommendations

Daniel Bock, Ph.D.

Overview

- Introduction
- Test Objectives
- Methods
- Results
- Discussion of Recommendations of DfT at mmWave
- Summary

What are the Key Markets Driving mmWave Test?

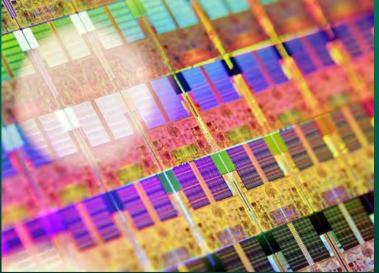
 There are four primary markets that are driving the mmWave market in test and are requiring wide pitch test:

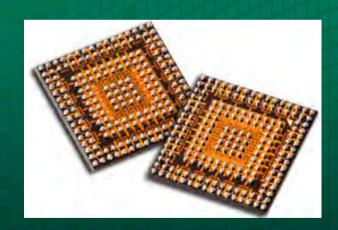
60 - 86 GHz Automotive Radar

60 GHz Wireless Network (802.11 ad)

60 – 80 GHz Wireless-HD Multimedia

56–86 GHz Cell Phone Short/Back Haul


June 9 - 12, 2013 IEEE Workshop


Why Wide Pitch?

• WHY IS THE INDUSTRY GOING TO WIDE PITCH (400-500 μm)?

- A large number of manufacturers are moving to Wafer Level-Chip Scale
 Package (WL-CSP) for their devices
 - True integration of fabrication, packaging, test and burn-in test to streamline the manufacturing process
 - Reduced Package inductance for backhaul, automotive radar, and E-band RF chips
- However, WL-CSP requires wider pitches for soldering to the PCB

Pyramid Probe®-MW for RF KGD

Production

- Custom layout to match your die
- Short, low-loss lines
- Low inductance supplies with bypass capacitors close to the DUT
- Trimmable inductors emulate package
- Low contact resistance
- Minimal pad damage
- Field replaceable
- Production, KGD test for mmWave device


Pyramid Probe MW Advantages:

- Frequency range to 81+ GHz on smallest frame size (RFC)
- Wafer-level calibration for accurate measurements, repeatability

June 9 - 12, 2013 IEEE Workshop

Pyramid Core for RF Testing

mW Transmission lines

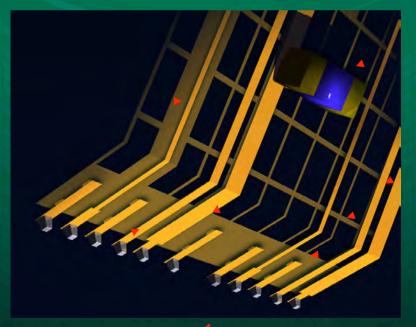
Precise and permanent tip alignment

 VacMode
 HV
 Spot
 WD
 HFW
 Sig
 Mag

 Lowvacuum
 15.0 kV
 4.5
 10.03 mm
 0.51 mm
 BSE
 500x

SEM photo of probe tips

June 9 - 12, 2013 IEEE Workshop


Wafer side view

Pyramid Probe Thin Film

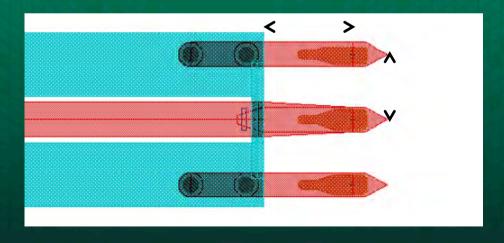
- The Pyramid Probe is a two-layer membrane that can handle a large variety of different signal types
- mmWave transmission lines use coplanar waveguide transmission lines because of their low loss

RF 50 Ω microstrip or * coplanar waveguide

Power supply

Components
within 30 ps of
DUT depending on
design

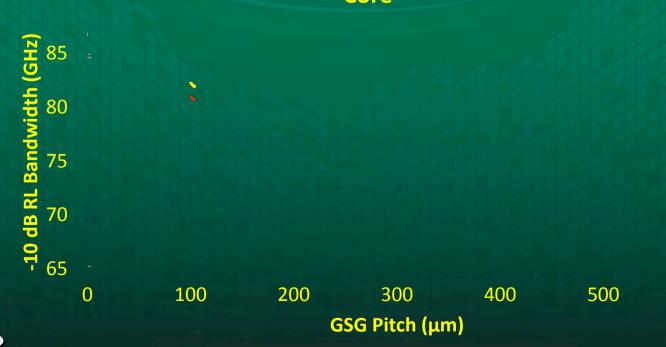
Two metal layers:
wafer side layer is signaltester side layer is ground


 Ground inductance 0.04 nH or less to the plane

> June 9 - 12, 2013 IEEE Workshop

Why be Concerned with Wide Pitch?

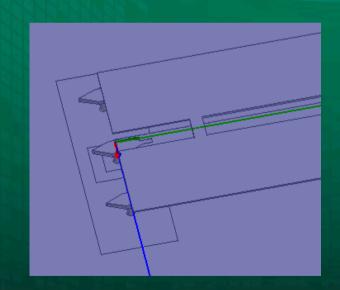
- Wide pitch is a problem primarily due to:
 - The relatively large inductance from the separation of the RF pins and ground pins
 - Pyramid Probe cards generally have a small region (~200 μm) of uncontrolled impedance near the tips
 - Leads to more return loss due to impedance mismatch

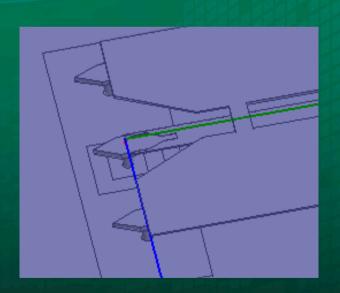


Measurement of Current mmWave Wide Pitch Production Probe

- As the pitch increases from 100 μm pitch, the
 -10 dB Return Loss (RL) bandwidth is reduced
 - Used the MSI sized membrane for tests (9.7 x 9.7 mm probing area; 408 I/O max)

Change in -10 dB RL Bandwidth vs. GSG Pitch on MSI Core

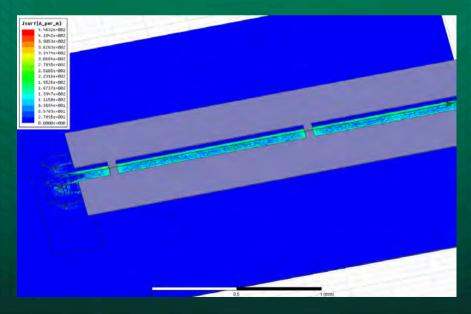

600


June 9 - 12, 2013

IEEE Workshop

How to Improve Performance at Wide Pitch?

- Add additional ground tips near the signal line for reduced return inductance
- Control the impedance better to the probe tips
 - Constant gap or taper?



Wide Pitch Simulations

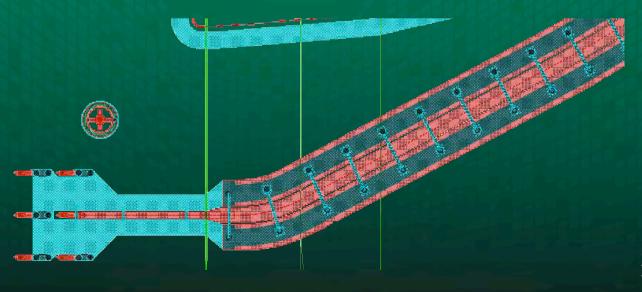
- In HFSS and Microwave Office, we simulated the RF performance
 - Optimize the return loss to better than -10 dB
 - Varied the length of taper
 - Number of probe tips tested

Simulation Recommendations

- Simulation results indicate the following
 - 5 GSG probe tips reduce ground return inductance

Number of Grounds (500 μm)	-10 dB RL Bandwidth
2	65 GHz
5	70 GHz

 Keeping a constant gap around the probe tip minimizes impedance discontinuities at the probe

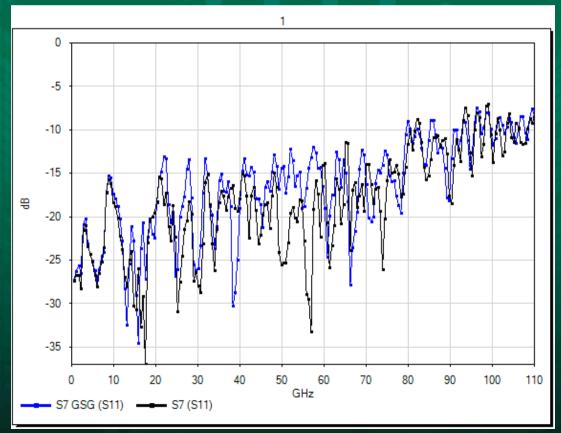

tips

Type of Tip (500 μm)	-10 dB RL Bandwidth
Traditional	65 GHz
Long Taper	70 GHz
Short Taper	73 GHz
Constant Gap	75 GHz

Pitch vs. Return Loss Experiment

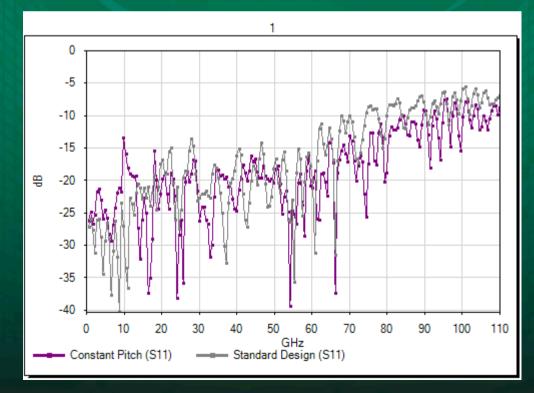

- Based on the simulations, we manufactured a series of probe cards to test the performance
- The experiments included:
 - The standard probe tip area design
 - 2 different tapers
 - Constant gap around the probe tip
 - Tested 2 grounds versus 5 grounds at wide pitch (300 μm to 500 μm)

Test Setup


- Tests were conducted in our facility in Beaverton, Oregon
- Equipment included:
 - Agilent 67 GHz PNA which included extenders to 110 GHz
 - 1 mm coaxial cable
 - Cascade Microtech Summit 12000Station
 - PC running WinCal™
 - All 2-port parameters were collecting using SOL measurements of the Pyramid Probe
 - 106-686 calibration substrate made by Cascade Microtech

500 μm GSG Return Loss

- This shows a comparison of two lines
 - One has GSG 80 GHz
 - One has S with 5 G's nearby 82 GHz



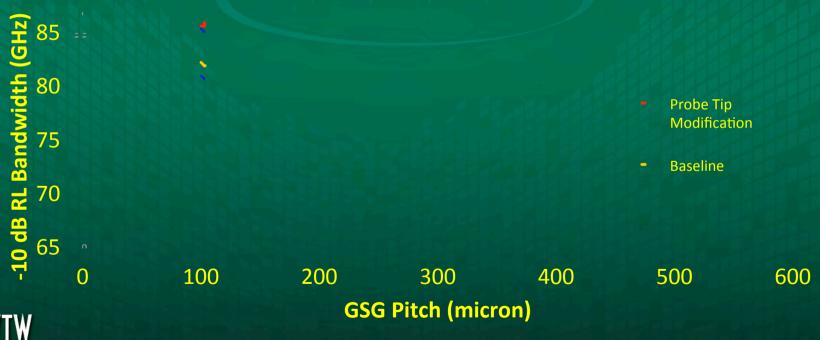
June 9 - 12, 2013 IEEE Workshop

Data Results: Ground Gap

- The results of the gap around the probe tips indicate that the best design is for constant gap around the probe tips
 - 67 GHz versus 82 GHz (500 μm)

Data Table of Results

- Data was then compiled and put into a table for comparison
 - For 300 micron and above, the 'Tight Ground Bandwidth' column includes 5 ground tips


Pitch (µm)	Standard Probe Tip Bandwidth (GHz)	Tight Ground Bandwidth (GHz)
100	82	82
150	75	85
200	75.4	78.4
250	73.4	80.4
300	70	84
350	71	81
500	67	82

Cascade Microtech Summary of Wide Pitch Experiments

 Results show that with the Pyramid Probe, it is possible to have nearly a flat -10 dB bandwidth versus pitch on our product to support automotive radar and backhaul

-10 dB RL Bandwidth Change vs. GSG Wide Pitch Design

Summary

- Cascade Microtech has recommendations on DUT design in order to maximize RF performance on test
 - Ideal layout
 - Probe Constant gap around probe tips
 - Device 5 ground tips for 300 um and above pitch
 - Non-ideal layout
 - 2 ground tips per signal is possible but with a few GHz reduction in performance
- Cascade Microtech has researched improved design to increase the -10 dB Return Loss bandwidth to beyond 80 GHz to meet market requirements

SWIW

Questions?

