

Ideal 3D Stacked Die Test

Ira Feldman Feldman Engineering Corp.

Overview

- Introduction
- Probe Challenge
- Contact Solutions
- Implications
- Conclusion

Cost of Test

≤ Cost of No Test

• Yield loss (materials & labor)

- Test development cost test engineering, non-recurring engineering/expenses (NRE), etc.
- Test operational cost operator labor, test equipment, test consumables (wafer probe cards, sockets, load boards), maintenance, floor space / facility expenses, etc.
- Test equipment / cell depreciation
- Rework cost
- Work in Progress (WIP) inventory cost
- Over stress or intrinsic device damage?
- Other damage (eg. probe)?

- Subassembly rework cost. If nonreworkable, cost of subassembly.
- Test escapes warranty or contractual cost, customer dissatisfaction / brand damage
- Possible infant mortality?
- Greater downstream test complexity and cost for similar or greater coverage?
- Loss of device characterization or process data?

SWTW

Test "Coverage"

Controllability

Observability

"Stacking 1.0" Wire Bonding

Sixteen 32Gb NAND Chips Toshiba's 64 GB Embedded NAND Flash Module

500µm

December 2009

5

1. Introduction to TSV-Based 2.5D- and 3D-SICs Die Stacking **Endless Stacking Opportunities** "Whatever your children can make using Lego bricks" Die 3 3D-SIC Die 2 Package substrate Package substrate • 2¹/₂D + 3D = <u>5¹/₂D-SIC</u> Die 3 Die 6 21/2D-SIC Die 1 Die 2 Die 3 Interposer Interposer Package substrate Package substrate "Wafer Probing on Fine-Pitch Micro-Bumps for 2.5D- and 3D-SICs", Erik Jan Marinissen (IMEC), Peter Hanaway (Cascade Microtech), et. al. 5 IEEE South-West Test Workshop - San Diego, California, June 2011

Bumps on the Road to 3D IC HVM

- Availability of commercial 3D EDA tools
 - Especially thermally aware design tools
 - Floorplanning
 - Routing
 - Power/signal integrity
- Micro bumping and assembly for finer pitch
- Wafer thinning, specifically the debonding step in the temporary bonding process
 - Higher yields required
- Thermal, where logic is part of the stack
- Test methodology and solution
 - KGD
 - Yield
 - Test methods
- Infrastructure related issues
 - Logistics
 - Supply chain handoff
- Cost reduction compared to alternatives

"Bumps on the Road to 3D ICs", E. Jan Vardaman (TechSearch International, Inc.), RTI Technology Venture "3-D Architectures for Semiconductor Integration and Packaging" December 13, 2012. © 2012 TechSearch International, Inc.

Overview

- Introduction
- Probe Challenge
- Contact Solutions
- Implications
- Conclusion

Xilinx Virtex-7 2000T FPGA (Oct '11)

Elements of SSIT [Stacked Silicon Interconnect Technology]

Microbumps

Figure 1: Examples of 40µm pitch copper pillar bumps capped with SnAg solder.

Ref: [Patterson]

SWTW

Microprocessor Example

Figure 9: CSAM image of a production unit post packaging

Intel Technology Journal (6/2008): 45 nm process ~50 µm tall Cu bumps

Electroplated Micro-Bump Bonding

- Cylindrical bumps Side1: Cu (5 μm) Side2: CuSn (5 μm + 3.5 μm)
- Size (today)
 Diameter : 25 µm
 Pitch : 40 µm
 Scaling down...

Cascade Microtech & IMEC (SWTW 2011)

5. 3D Test Access: 3D Probing Fine-Pitch Micro-Bumps at IMEC

Approximate Specifications

	Microprocessor	Wide I/O DRAM	FPGA "slice"	Tezzaron "SuperContact IV"	
Die Size	149-295 mm²		24 mm x 8 mm		
Bumps - Signals - Total	~1/3 of total	872 1,200	> 20,000 50,000	> 2 M	
Pitch	90 µm	50 μm x 40 μm	40 µm	1.2 μm	
Bumps / mm ²	123	< 20 (8 mm sq.) 500 core	260	694,444	

Ref: [Patti]

By the numbers...

	DDM	Cok	Cigmo Louol	Assembly Total Microbumps						
	FFIVI	Cpk Sigma Level	Sigma Lever	1,000	1,200	10,000	100,000	200,000	1,000,000	10,000,000
	10			1.0%	1.2%	10.0%	100.0%	200.0%	1000.0%	10000.0%
	5			0.5%	0.6%	5.0%	50.0%	100.0%	500.0%	5000.0%
	1	1.67	5	0.1%	0.1%	1.0%	10.0%	20.0%	100.0%	1000.0%
	0.5			0.1%	0.1%	0.5%	5.0%	10.0%	50.0%	500.0%
	0.1			0.0%	0.0%	0.1%	1.0%	2.0%	10.0%	100.0%
	0.05			0.0%	0.0%	0.1%	0.5%	1.0%	5.0%	50.0%
	0.002	2.00	6	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	2.0%
	0.001			0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	1.0%
1										

Two scenarios to consider:

 Defect rate too high, therefore all units have interconnect failures requiring rework or internal repair mechanism.
 Defect rate 6 sigma or better, therefore unlikely to see failures at test.

Overview

- Introduction
- Probe Challenge
- <u>Contact Solutions</u>
- Implications
- Conclusion

"Challenges and Solutions for Testing of TSV and MicroBump Devices by Direct Connection", Ben Eldridge, 3D Test Workshop 2011 22

Advantest: MEMS Probes

"A Lew Force MEMS Probe Solution For Fine-Pitch 3D-SIC Wafer Test", Matthew W. 100 201, 12, 2013 3D Test Workshop 2011 23 IEEE Workshop 201

Cascade Microtech: Lithographically Printed

Scale by K XYZ/K borce/K²

Fully-routed 6 x 50 array at 40 x 50 µm pitch New space transformer technology

"Probing Strategies for Through-Silicon Stacking", Eric Strid, et. al, 3D Test Workshop 2011 24

Many Challenges

- Contact Technology
 - Force & damage
- Probe Card Signal Routing
- Tester Resources
- Power Delivery
 - At speed & DFT
- Weak IO Drive Current

Ref: [Smith2012]

Signal Density Pyramid

Level	Connections	Pitch	Density
Microbumps Die to Substrate	200,000	40 µm	260 / mm ²
C4 Die to Package	24,000	180 µm	31 / mm²
BGA Package to PCB	1,760	1 mm	1 / mm²

Typical Probe Card Signal Density

Level	Connections	Pitch	Density
Tester to PCB	20,000	~ .8 – 2.54 mm	.16 – 1.6 / mm²
PCB to Space Transformer	> 20,000	~ .8+ mm (PTH)*	1.6 / mm²
Space Transformer to ?	> 20,000	90 ~180 µm	31 ~ 123 / mm²
? Interposer ?		90 µm → 40 µm	
Probe Contactor ? to Die	50,000	40 µm	260 / mm²
Microbumps Die to Substrate	200,000	40 µm	260 / mm²

* 0.25 mm fan-out possible but with selective lamination / advanced fab technology to achieve typical ATE board thickness. However, not likely for full array due to signal count.

Ref: [Feldman2011]

Overview

- Introduction
- Probe Challenge
- Contact Solutions
- Implications
- Conclusion

Outside of Wafer DFT Coverage

Inter-die connectivity (final driver, receiver, and interconnect) not tested during DFT wafer level probe.

Improved DFT Coverage

Add "feedback" structures to boundary scan cell to check drivers and receivers at wafer level to increase coverage.

Not Covered at DFT wafer level test

Signal Probing @ Wafer Coverage

Wafer Probe Default

Due to weak drive current on I/O drivers options include:

I/O Scan Cell

- 1. Add "non-mission mode" high current transistor to drive signal to ATE
- 2. Add amplification to probe card as close to contact as possible
- 3. Use drive into load as "signature"

Core Logic

Die 1 - Thinned Si Wafer

TAP

Microbump Probe Avoidance?

Examples:

- Wide I/O like DRAM
 - No BIST
 - Test compression & added test pads
- Si Interposer
 - Optical inspection
 - Indirect test

Yield loss due to microbump damage concerns?

"Not Known Bad Device"

Overview

- Introduction
- Probe Challenge
- Contact Solutions
- Implications
- <u>Conclusion</u>

It Depends...

3D Stacked Die Test

• Is Not

- Universal tool to use everywhere in die flow

- Possible for all design technology
- Done "after design release"
- Inexpensive
- 🔀 May Be
 - Needed based upon yield
 - Cost effective

Test Engineers & Managers

- Need to engage early for DFx die & system
 - DFT coverage
 - Special drive and scan cells?
 - Repair / rework mechanisms
 - Test strategies
- Become experts in cost models
 - Failure modes estimated
 - ROI analysis on all test activities
 - Continuous process monitoring & improvements

"In God we trust; all others must bring data."

(incorrectly?) attributed to: W. Edwards Deming & Robert W. Hayden

http://en.wikipedia.org/wiki/W._Edwards_Deming

Acknowledgments

- Colleagues from the International Technology Roadmap for Semiconductors (ITRS)
- Advantest
- Cascade Microtech
- FormFactor
- Teradyne

References #1

- Ben Eldridge (FormFactor). "Challenges and Solutions for Testing of TSV and MicroBump Devices by Direct Connection", IEEE 3D Test Workshop 2011.
- Ira Feldman (Feldman Engineering Corp). "Probe Card Cost Drivers from Architecture to Zero Defects", IEEE Semiconductor Wafer Test Workshop (SWTW) June 2011.
- Gary Fleeman (Advantest). "Getting to Known Good Stack", Silicon Valley Test Workshop, October 2012.
- JEDEC Standard "Wide I/O Single Data Rate" JESD229, December 2011.
- Jung-Sik Kim, et.al., (Samsung Electronics) "A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O DRAM with 4×128 I/Os Using TSV-Based Stacking", ISSCC 2011.
- Steve Leibson. http://low-powerdesign.com/sleibson/2011/10/25/generationjumping-2-5d-xilinx-virtex-7-2000t-fpga-delivers-1954560-logic-cells-consumesonly-20w/
- Doug Lefever (Advantest) "Through Silicon Via Testing Known Good Die (KGD) or Probably Good Die (PGD)", SEMATECH/ISMI Symposium Japan, September 15-17, 2009.

References #2

- Matthew W. Losey (Touchdown Technologies/Advantest), et. al. "A Low-Force MEMS Probe Solution For Fine-Pitch 3D-SIC Wafer Test", IEEE 3D Test Workshop 2011.
- Liam Madden (Xilinx). "Heterogeneous 3-D stacking, can we have the best of both (technology) worlds" International Symposium on Physical Design, March 25, 2013.
- Erik Jan Marinissen (IMEC), Peter Hanaway (Cascade Microtech), et. al. "Wafer Probing on Fine-Pitch Micro-Bumps for 2.5D- and 3D-SICs". IEEE Semiconductor Wafer Test Workshop (SWTW) June 2011.
- Erik Jan Marinissen (IMEC). "Testing 3D-Stacked ICs", RTI Technology Venture "3-D Architectures for Semiconductor Integration and Packaging" December 12, 2012.
- Kenneth P. Parker, Editor. "3D-IC Defect Investigation. Provisional Report of the IEEE P1838 Defect Tiger Team". July 5, 2012.
- Deborah S. Patterson (Amkor Technology). "2.5/3D Packaging Enablement through Copper Pillar Technology", *Chip Scale Review*, May 2012.
- Bob Patti (Tezzaron). "Implementing 2.5-D and 3-D Devices" RTI Technology Venture "3-D Architectures for Semiconductor Integration and Packaging" December 13, 2012.

References #3

- Ken Smith, Peter Hanaway, et. al. (Cascade Microtech), "3D-TSV Test Options and Process Compatibility", IMAPS Device Packaging Conference, March 10, 2011.
- Ken Smith, Daniel Bock, et. al. (Cascade Microtech), Erik Jan Marinissen (IMEC). "Test Strategies for Wide IO Memory, 3D-TSV Technology Test Vehicles and Ultra Fine Pitch", IEEE 3D Test Workshop 2012.
- Eric Strid (Cascade Microtech), et. al, "Probing Strategies for Through-Silicon Stacking", IEEE 3D Test Workshop 2011.
- Mottaqiallah Taouli, Said Hamdioui (TU Deflt), Erik Jan Marinissen (IMEC), Sudipta Bhawmik (QUALCOMM). "3D-COSTAR: A Cost Model for 3D-SICs" RTI Technology Venture "3-D Architectures for Semiconductor Integration and Packaging" December 14, 2012.
- E. Jan Vardaman (TechSearch International, Inc.). "Bumps on the Road to 3D ICs" RTI Technology Venture "3-D Architectures for Semiconductor Integration and Packaging" December 13, 2012.
- Onnik Yaglioglu, Ben Eldridge (FormFactor). "Direct Connection and Testing of TSV and Microbump Devices using NanoPierce Contactor for 3D-IC Integration", 2012 IEEE 30th VLSI Test Symposium (VTS), April 23-26, 2012.

Thank You!

Ira Feldman ira@feldmanengineering.com

Please visit my blog www.hightechbizdev.com

