

Beyond ISMI: Electric Current Capacity of Vertical Probes Under Pulses and Transient Signals

Kevin Hughes FormFactor, Inc.

Semiconductor Trends Influencing CCC

* Zeman SWTW2010 "A New Methodology for Assessing the Current Carrying Capability of Probes used at Sort"

- Keeping CCC for < 100µm Pitch is really hard
- Need to design efficiently to keep pace
 - Requires smarter probe design
 - Requires smarter communication between test customers & suppliers

How are Things Done Today?

• ISMI CCC Test standard:

Presented at SWTW in 2009, the goal of the ISMI guideline is "...to minimize variability in the measurement of this critical parameter... With a focus on reproducible measurements, this guideline provides CCC ratings that are inherently different from what a user will see in a production environment."*

3

 Test suppliers/customers develop internal "rules of thumb" to convert intended chip current into equivalent ISMI rating.

* Daniels, E Boyd, 2009. *ISMI Probe Council Current Carrying Capability Measurement Standard*. San Diego, CA, June 7-10 2009, IEEE SW Test Workshop.

Influence of CCC on Probe Design

Design "Points"

- Because the physics involved are nonlinear and start to "kick in" < 100µm pitch, the rules-of-thumb will become increasingly less useful.
- Need to elevate the level of discussion and understanding with regard to CCC between test suppliers and customers.

Probe design is all about proper allocation of design "points"

CCC

- Under-performing CCC = very bad, burnt probes
- Over-performing = still bad, comes at cost of probe stiffness & max OT

Objectives & Goals

 Root cause of probe burns often lies in wafer-level defects causing unpredictable surges in current*

* Zeman SWTW2010 "A New Methodology for Assessing the Current Carrying Capability of Probes used at Sort"

- Goal is to understand & share learning on how CCC behaves against the full spectrum of square-wave signals.
 - <u>Present Day</u>: Develop & verify a multiphysics model that can handle any type of specified signal.
 - <u>Long Term</u>: Construct a full multiphysics probe card model to convert Chip Requirements --> Spring Design --> ISMI Rating

Failure Modes: DC vs Square-Wave

• DC Failure Mode:

Reduction in contact force from heating in high stress locations of spring

• Square-Wave Failure Modes:

- Long Duration Pulse = Reduction in contact force
- Short Duration Pulse = Tip melting

Overview of Test Methods & Procedure

• Multiphysics Simulation Calibration Steps:

- Using ANSYS & Solidworks Flow Simulation, built a model that matched ISMI testing for all our probe products. This gave insight into temp rise/fall times.
- Ran experiment for CCC vs Pulse ON length
- Refined model to match all test cases for the same contact constraints
- Used model to generate CCC behavior for any specified signal
- Quantified this behavior for one of our probe products for presentation today. CCC_{ISMI} = 0.8A

Results Overview

Important Insight:

 Probe behavior most easily understood based on the relationship between probe cooling and OFF duration between pulses.

• For the probe presented:

- Time to cool \approx 100ms (τ = 25ms)

Can classify any square wave into 3 groups:

- <u>Isolated Pulses</u>: Time between events is long enough that the probe carries no significant heat between pulses. ($f \le 10 \text{ Hz}, T \ge 100 \text{ms}$)
- <u>Hi-Speed Signals</u>: Time between events is short enough that the probe experiences only small ΔT between pulses. ($f \ge 1 \ kHz$, $T \le 1ms$)
- Intermediate Signals: Consists of the remainder. Time between events is such that the probe experiences large ΔT & carries residual heat between pulses. (f = 10 Hz 1 kHz, T = 100ms 1ms)

Isolated Pulses: Definition

• Definition:

- Time between events is long enough that the probe carries no significant heat between pulses. ($f \le 10 \text{ Hz}, T \ge 100 \text{ms}$)
- Analogous to capacitor discharge or not fully powering down between touchdowns ("hot stepping")
- Most important signal class to understand in order to prevent burnt probes

Isolated Pulses: Procedure

Experimentally measured CCC for Isolated Pulses:

- ON Duration: 20ms, 10ms, 1ms, 0.1ms
- OFF Duration: 100ms
- Procedure:
 - Signal Run for 1min \rightarrow Check Force \rightarrow Increase Current \rightarrow Repeat Until Failure
- Probe subjected to ~545 pulses at each current level before re-checking force and increasing current further

Isolated Pulses: Results

- SWTW
- Probes survived 550 pulses at 4.0 A, if duration is \leq 1ms.
- 400% increase in CCC over ISMI rating of that product!
- June 9 12, 2013 IEEE Workshop
- Starting at ~5.0 A, 0.1ms pulse we start seeing melted tips

Isolated Pulses: Behavior

Isolated Pulses: Comments

- There exists a practical limit on CCC for isolated pulses where max current can no longer be increased by a decrease in pulse length due to instantaneous melting at the tip.
 - For the product shown this practical limit is ~5.0 A for a 0.1n pulse
- There exists a transition point where the probe failure mechanism changes from loss of contact force to tip melting.
 - For the product shown here that point is a 4.0 A, 1ms duration pulse.

• Dominating factors:

- Pulse Width & Spring Design
- Isolated pulses can be successfully predicted and understood using a multiphysics simulation software

1ms - 4.0 A

Hi-Speed Signals: Definition

• Definition:

- Time between events is short enough that the probe experiences only small ΔT between pulses. ($f \ge 1 \ kHz, T \le 1ms$)
- Analogous to a fast logic signal
- Hi-Speed signals represent the most common intended signals
 - Understanding CCC behavior for signals operating at speeds > 1 kHz will help tailor probe designs used at these locations.

If we assume small ΔT between pulses, CCC for any duty cycle should follow the equation:

 $CCC\downarrow HiSpeed = \sqrt{CCC\downarrow ISMI}$

Hi-Speed Signals: Results

- Simulation & Experimental tests closely follow the $cretical is pred = \sqrt{Cl}$ equation for equivalent energy input
 - Significant increase in CCC for Duty Cycles < 30%
- Behaves thermally like a DC input

Intermediate Signals: Definition

• Definition:

- Consists of the remainder of signals that do not qualify to be either "isolated" or "Hi-Speed."
- Time between events is such that the probe experiences large ΔT & carries residual heat between pulses. (f = 10 Hz 1 kHz, T = 100ms 1ms)

• Most complex to analyze:

- Temperature "walks upward" with each pulse, but at a rate unique to that signal condition & probe design.
- Number of pulses to reach steady-state can range from just a handful to several hundred
- Thankfully these are the least likely signal types to be used on a probe card

Intermediate Signal: Results

- This particular signal condition reaches steady-state in 3 cycles
 - Max CCC for 5ms ON / 45ms OFF = 1.5 A
- Intermediate signals will always have a lower CCC than the equivalent Isolated Pulse or Hi-Speed Signal
 - 5ms pulse width for Isolated Pulse = 1.75 A
 - 10% Duty Cycle for Hi-Speed = 2.5 A

Summary & Conclusion

- CCC can be greatly influenced by the specific signal used on a probe
- Shown that CCC of a probe can be increased by as much as 400% given the proper signal condition
- The CCC of any arbitrary signal can be modeled successfully using a multiphysics simulation software

• For vertical probe cards to continue to advance < 100um Pitch:

- Probe card suppliers should better understand their CCC capabilities for unpredictable surges in current
- Probe card customers can aid by providing as much information about the test conditions as possible

 \mathbf{O}

Communication will become increasingly important for matching probe technology to product

Future Work

- Collect additional experimental data to continue to validate the multiphysics simulation
- Consider defining a CCC characterization test for isolated pulses
 - Would need to better understand what a typical discharge event looks like
- Increase overall robustness and value of simulation to account for any combination of:
 - Heat from neighboring springs
 - Testing at elevated or reduced temperatures
 - Cres Variation
- Allow FormFactor/MicroProbe to evaluate very quickly:
 - − Product Needs → Spring Design → Equivalent ISMI → Test → Ship

19

