Test & Reliability Challenges in Advance Semiconductor Geometries

Rancho Bernardo Inn

Yervant Zorian
Fellow & Chief Architect
6/9/13
Contents

• Industry Transformational Trends
• More than Moore Challenges
• Impact on Test, Yield and Reliability
• Multi-Die stacks
• Innovation – Forward Challenges
• Conclusions
Industry Transformational Trends

- Cloud Computing
- Software Applications User Experience
- Shortened Time-to-Volume
- Pressure on R&D Productivity
Consumers Driving “Smart” Electronics

Wireless Connectivity
Anytime, Anywhere

High Definition Imaging Anywhere

Device Convergence

Multi-functional

Multi-media Access

Multi-media

Digital TV

Smart Phone

Automotive

Infotainment

Multi-media

Picture Printer

Multi-media PC

Gaming
Convergence
Data Center / Cloud Computing Trends

What Happens in an Internet Minute?

- 20 New victims of identity theft
- 204 million Emails sent
- 47,000 App downloads
- $83,000 In sales
- 61,141 Hours of music
- 20 million Photo views
- 320+ New Twitter accounts
- 100,000 New tweets
- 639,800 GB of global IP data transferred
- 135 Botnet infections
- 1,300 New mobile users
- 100+ New LinkedIn accounts
- 277,000 Logins
- 6 million Facebook views
- 2+ million Search queries
- 3,000 Photo uploads

Source: Cisco VNI, 2011-2016
Data Traffic by Forecasts

- By 2016, total data traffic will be 4x 2011
- By 2016, global IP traffic will reach 1.3 zettabytes annually (110 exabytes per month)
- By 2016, there will be nearly 19 billion global network connections (fixed and mobile); the equivalent of two and a half connections for every person on earth.
- By 2016, there will be about 3.4 billion Internet users, which is more than 45% of the world’s projected population.
System

Software Infrastructure

Application Framework

Libraries

O/S Runtimes

O/S

Bare-Metal Software

Drivers

Configuration

Test Programs

Scheduler

…

Power Management

Silicon

Mixed Signal

Low Power

Advanced Node

Giga-Gates/GHz

Memories

3D-IC
Integration

• **Before 32nm**, new process was introduced every other year
 - Since then, a new process **every year**

* Source: ITRS, Samsung Electronics Co.
Silicon Complexity

- 250nm
- 180nm
- 130nm
- 90nm
- 65nm
- 45/40nm
- 32/28nm
- 22/20nm
- 14nm

- Timing Closure!
- Signal Integrity
- Power Verification
- Power!
- Verification!
- Test & Yield!
- Clocks
- Power!!
- Verification!!
- 3D

- Power !!!
- Verification !!!
- Software!!
- Test & Yield
- 3D!!

- Power !!!
- Verification !!!
- Variability
- Test & Yield
- 3D!!
IC Design Expensive and Difficult

<table>
<thead>
<tr>
<th></th>
<th>32/28nm node</th>
<th>22/10nm node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fab costs</td>
<td>$3B</td>
<td>$4B – 7B</td>
</tr>
<tr>
<td>Process R&D costs</td>
<td>$1.2B</td>
<td>$2.1B – 3B</td>
</tr>
<tr>
<td>Design costs</td>
<td>$50M – 90M</td>
<td>$120M – 500M</td>
</tr>
<tr>
<td>Mask costs</td>
<td>$2M – 3M</td>
<td>$5M – 8M</td>
</tr>
<tr>
<td>EDA costs</td>
<td>$400M – 500M</td>
<td>$1.2 – 1.5B</td>
</tr>
</tbody>
</table>

- Intensive customer/partner collaborative developments

Source: IBS, May 2011
Top Semiconductor IP Vendors

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>2010</th>
<th>2011</th>
<th>Growth</th>
<th>2011 Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ARM Holdings</td>
<td>575.8</td>
<td>732.5</td>
<td>27.2%</td>
<td>38.3%</td>
</tr>
<tr>
<td>2</td>
<td>Synopsys</td>
<td>191.8</td>
<td>236.2</td>
<td>23.2%</td>
<td>12.4%</td>
</tr>
<tr>
<td>3</td>
<td>Imagination Te</td>
<td>91.5</td>
<td>126.4</td>
<td>38.1%</td>
<td>6.6%</td>
</tr>
<tr>
<td>4</td>
<td>MIPS Technology</td>
<td>85.3</td>
<td>72.1</td>
<td>-15.5%</td>
<td>3.8%</td>
</tr>
<tr>
<td>5</td>
<td>Ceva</td>
<td>44.9</td>
<td>60.2</td>
<td>34.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>6</td>
<td>Silicon Image</td>
<td>38.5</td>
<td>42.8</td>
<td>11.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>7</td>
<td>Rambus</td>
<td>41.4</td>
<td>38.9</td>
<td>-6.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>8</td>
<td>Tensilica</td>
<td>31.5</td>
<td>36.3</td>
<td>15.2%</td>
<td>1.9%</td>
</tr>
<tr>
<td>9</td>
<td>Mentor Graphic</td>
<td>27.3</td>
<td>23.6</td>
<td>-13.8%</td>
<td>1.2%</td>
</tr>
<tr>
<td>10</td>
<td>AuthenTec</td>
<td>19.6</td>
<td>22.8</td>
<td>16.3%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Source: Gartner, March 2012
Test & Yield

- Increasing design complexity
 - Many AMS and Interface IP cores
 - Many existing third-party IPs
 - Large number of memory instances

- Exploding digital logic size
 - Greater than 100M gate designs
 - Global design teams

- Increasing test & yield impact
 - Quality – DPPM
 - Total memory bit count
 - Yield Optimization
 - Designer productivity
 - Time-to-market and time-to-volume
SoC Test Challenges

Higher Test Costs
- Trend: large designs & increased on-chip memory
- Need: less test data, faster execution on the tester

Lower Productivity & Efficiency
- Trend: complex designs and implementation flows
- Need: Hierarchical SoC implementation and validation solution for memories

Functional Performance Degradation
- Trend: high performance cores
- Need: test with minimal impact on functional performance, area efficient solution

Slow Ramp-up, Higher DPPM
- Trend: small geometries, subtle & hard to detect defects
- Need: advanced fault models, efficient volume diagnostics & yield analyses
New Defects

Equilibrium

- **Double Patterning**
- **Voltage Scaling**
- **Random Dopant Fluctuation**

Variation from overlay shift

Local **variation** with Voltage

Global and local Vth **variation**

Process variation at 20nm is significant, causing bit failures
Sample SOC: DesignWare® IP based
SOC Test Solution
Accelerate Higher Quality, Lower Cost Test

- Logic Test
- Memory Test & Repair
- BIST of High-Speed I/O IP
- Yield Analysis

Comprehensive Solution for SoC and Core-Based Designs

®

- Pin-limited compression
- Advanced fault models
- Power-aware test
- Easy integration and verification of self-test IP
- High defect coverage
- High-speed SERDES interfaces (PCI Express®, USB 3.0, etc.)
- Verification IP for integration test
- Physical-aware diagnostics
- Fast identification of systematic yield loss mechanisms
Hierarchical Design & Verification
Embedded Memory Is Growing
Key Driver Of Design Success

Number of Processors is Growing

Cache Size / Processor is Growing

SoC Memory is Growing

Memory Dominating Chip Area

Need an efficient solution to test, repair and diagnose thousands of on-chip memories

Source: Semico, June 2010
Source: Semico, October 2011
Process Miniaturization Challenges

• Higher susceptibility and new and speed related fault types
 ✓ Requires expanded test to detect new fault types
 ✓ Requires high speed test capability

• Higher level of miniaturization
 ✓ Needs fault classification and localization
 ✓ Needs on-the-fly monitoring and analysis of volume diagnosis data
 ✓ Requires better support for yield learning and production ramp up
Cost of Unit Out

Capital cost ($M) vs. Normalized cost per unit out

Source: IC Knowledge, 2005 & IBS 2008
Dramatic Rise in Systematic Yield Issues

- Cheating with physics induces more process variability at each nanometer node
- Some layout features react strongly to variability causing systematic yield issues
- Each successive nanometer node faces more systematic yield loss

Chart data source - IBS
Embedded Test & Diagnosis
High Manufacturing Test Quality

- Out-of-box enhanced test algorithms
- Fully characterized for each advanced node
- Provides 100% fault coverage
 - New fault types appear at advanced nodes
 - Resistive faults
 - Performance faults
 - Bridging faults
 - Parametric variation
 - Generic algorithms are not as granular, resulting in test escapes
- Fault injection based analysis

<table>
<thead>
<tr>
<th>Fault Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static/dynamic</td>
</tr>
<tr>
<td>Write mask</td>
</tr>
<tr>
<td>Weak</td>
</tr>
<tr>
<td>Address decoder</td>
</tr>
<tr>
<td>Bit-line leakage</td>
</tr>
<tr>
<td>Intra & Inter-port</td>
</tr>
<tr>
<td>Delay coupling</td>
</tr>
<tr>
<td>Data setup/hold</td>
</tr>
</tbody>
</table>
Process Variation- Read Failures in SRAM

Read Failures should be tested in (VDD\textsubscript{max}, T_max) corner

- More than 22% variation of Vth brings to a failure

\begin{tabular}{|c|c|c|c|}
\hline
T \ V & VDD\textsubscript{min} (0.765V) & VDD\textsubscript{typ} (0.85V) & VDD\textsubscript{max} (0.935V) \\
\hline
-40 & X & X & X \\
25 & & & \\
125 & & & \\
\hline
\end{tabular}

for 30% L and W variation
Repair Solution Impacts Memory Yields

![Graph showing the impact of repair solution on memory yields. The graph has two lines: one in red for memory without repair, and one in yellow for embedded test & repair. The x-axis represents the amount of memory on the die (Mb), ranging from 1 Mb to 32 Mb, and the y-axis represents memory yield (%), ranging from 0% to 100%. The graph illustrates a decrease in memory yield as the amount of memory increases, with the red line showing a more significant decrease compared to the yellow line.,]
Repair Efficiency

- Redundancy allocation algorithm maximizes available repair resources
 - Numerous types and amount of redundancies

- Repair methodologies to maximize repair
 - Multi-corner cumulative repair
 - Multi-zone fuse containers
 - In-system periodic repair capability
 - Fastest system recovery with multi-power island chips
Why FinFETs

As predicted for many years, but often postponed, the device level of the chip is finally changing

• “Conventional” planar transistors are reaching the limits of scaling and have become “leaky”: They use too much power

• FinFETs enable products with higher performance and lower power consumption

• There are alternatives, but FinFETs promise better continuation of Moore’s Law
How FinFETs Work
Field effect transistors: The field from the gate controls the channel

Planar FET

FinFET

“Multiple” gate surrounds a thin channel and can “fully deplete” it of carriers. This results in much better electrical characteristics.

Single gate channel control is limited at 20nm and below
FinFET Advantage: Intel’s Perspective

- Benefit of Intel’s FinFET with respect to Intel’s 32nm planar technology
 - Tri-Gate transistors provide an unprecedented 37% delay improvement at low voltage.
 - Tri-Gate transistors can operate at lower voltage, providing ~50% active power reduction
FinFET Impact on Design for Test

SoC Designers
Libraries and tools will minimize the impact on digital design.

Foundries
Significantly impacted.

The impact of FinFETs is largest below Metal 1
Double patterning and restricted design rules, while often associated with FinFETs, are not unique to them and also necessary for planar technologies.

IP Designers
Standard cells, memory compilers and custom design are impacted.
FinFETs in SRAMs

• Special focus on low voltage operation
 – Read assist and write assist circuitry to improve robustness
 – Compile time options to maximize

• Large SRAM macros provide alternatives to embedded DRAMs

• Enhancing Memory Test & Repair to handle FinFET related failures
 – Fault models for planar FETs need to be extended to cover FinFETs
 – Further enhancements in compression of test and repair algorithms

Source: IBM Research, 2010 Symposium on VLSI Technology
Realistic Faults in FinFET SRAMs

• Traditional faults
 – stuck-at fault, stuck-open fault, transition fault, address decoder fault, coupling fault, etc.

• Process variation faults
 – Transistor threshold voltage is affected by gate length (L) and fin thickness (Tfin).

• FinFET specific faults
 – Opens in FinFET transistor back gate cause delay and leakage faults (transistor threshold voltage is affected by back gate voltage)
Detection Programmable

New MARCH based test algorithm
$W(P)R(P)W(\sim P)$
$R(\sim P)\ldots..$

WGL pattern

Tester

Select test algorithm register for serial access
Load alternative test algorithm
Automated Rapid Fault Isolation and Identification
Multi-level Precision Diagnostics

Level 1: Memory Instance Failure

Level 2: Logical Address of Failure

Level 3: Physical Address of Failure (row, col)

Level 4: Physical X,Y coordinates of failing bit

Level 5: Defect classification (sing bit, paired bit, col, row etc.)

Level 6: Fault Classification (stuck-at, transition, coupling, etc.)

Level 7: Fault localization (aggressor/victim cell coordinates etc.)
Low Cost Failure Diagnostics Solution

SoC Design with ET&R

Silicon Browser

- Visualization of Test Results
- Memory Dump

Interactive data exchange

Chip with STAR Memory System

- Diagnostics
- Fault localization
- Memory Characterization
Yield Optimization

- Embedded Test & Repair
 - Test/Repair IP Insertion
 - Vector Generation
 - Localization & Signatures
- Yield Optimization
 - Failure Visualizations
 - Cross-Domain Correlations
 - Dominant Failure Modes
Identifying Dominant Failure Mechanism
How to get the largest yield improvement

• Rise in systematic defects
 – Very few dirt particles or fall-on defects

• 100s of failed dies in first silicon

• 10-50 fault candidates per failed and diagnosed die

• 15-20 metal segments & Via per candidate net

• $100 \times 10 \times 10 = 10k$ sites for FA
 – For each silicon lot during ramp

• FA cycle time per site: 4-8 hours
 – Can manage <10 sites only
How Does Volume Diagnostics Help?

• Volume Diagnostics
 – Statistical Analysis of Diagnostics results from multiple failing chips
 – Identifies systematic, yield-limiting issues by using design data
 – Produce outputs for Physical Failure Analysis (PFA)
Design-Centric Volume Diagnostics

Multi-Tool Manual Flow

2-3 Weeks

- Low Yield Lot
- Cell Fail By Test
- Failing Cell Map
- Spatial Trends
- Failing Cells and Nets
- Failing Nets On Layout
- PFA Sites Low Probability

Yield Optimization Automated Flow

2-3 Days

- Low Yield Lot
- PFA Sites High Probability

- An order of magnitude faster systematic failure localization
- Prioritization of failure types based on yield impact
- Success in capturing dominant systematic failure mechanisms

*PFA – Physical Failure Analysis
Shortest Time to Volume

Tape Out to First Silicon
- Pattern Generation
 - Weeks

Silicon Bring Up
- Pattern Optimization & Silicon Debug
 - Months

Production
- Defect Analysis for Yield Optimization
 - Months

Using ET&R
- Reduced Time-to-Volume
 - Days
 - Days
 - Weeks

FAB
IP
DESIGN

SYNOPSYS Accelerating Innovation
Trends for 3D Stacking

All these technologies will co-exist!
3D Packaging in cell phones

- 3D packaging used in cell phones for several years
 - Stacked dies with Wire bond
 - Package on Package (PoP)

2003 STM « world record »

Source: Prismark
Beyond SoC: SiP Alternatives

- **SoC**: System-on-Chip. Integrate combinations of logic, processor, SRAM, DSP, A/RF, DRAM, NVM
- **SiP**: 3D Stacked Dies
 1. **Non-TSV**
 - bare die stacking: wirebond, flipchip, embedded die substrate
 - package stacking: PoP, PiP
 2. **TSV**
 - via first, via middle, via last
Evolution in 3D Technologies

non-TSV

Limitations
- Peripheral bonds only
- Long wire bonds (high inductance, high crosstalk, low speed interconnect)
- Limited to low-density interconnects and with specific I/O pad routing

Benefits
- Area placement
- Excellent electrical characteristics
- High densities
- Orders of magnitude higher interconnect densities between dies

TSV
Through Silicon Via Pros and Cons

• Pros
 – Allow even smaller package outline
 – No pad extension needed
 – Lower sensitivity to foreign material at Camera assembly
 – Wire bonding compatible layout
 – Reflow process compatible
 – Better interconnect routing capability

• Cons
 – More complex technology
 – Glass
 – Silicon
 – Back-end processes
 – Cost
3D Stacking is Not New… But TSVs Are!

- **Multi-Chip Packaging**
 - Dense integration
 - Heterogeneous technologies

- **Vertical Stacking**
 - Denser integration
 - Smaller footprint

- **Through-Silicon Vias (TSVs)**
 - Even denser integration
 - Increased bandwidth
 - Increased performance
 - Lower power dissipation
 - Lower manufacturing cost
Yield Implication Due to 3D Levels

Assembled Product Yield = (Probability of Good Devices)

Number of Devices

Assembled Product Yield

Probability of Good Devices = 99%

95%

90%

80%

70%

60%

Number of Devices

2 4 6 8 10
Tests for 3D Induced Effects

• Test Coverage for TSV Interconnect
• Defect Coverage for due to
 – Thinning Process
 – Thermal Dissipation
Known Good Die Challenge:

- Conventional burn-in challenge
 - Full speed test and burn-in prior to packaging
 - Higher pin count with finer pitch
 - Increased functionality and frequency

- KGD requires
 - Extra stress during probe, carriers, or WLBI

- Necessary for SiP production
Wafer Level Burn-in and Test

- Greatly simplifies backend IC fabrication line
Conventional 2D Test Flow

Conventional 2D

- Main role of Final Test (FT): guarantee outgoing product quality
- Main role of Wafer Test (WT): prevent unnecessary package cost

- WT executed only if benefits exceed costs:
 \[(1-y) \cdot d \cdot p > t\]

with
- \(y\): fabrication yield
- \(d\): fraction of faulty products that the WT can detect (‘test quality’)
- \(p\): preventable product cost
- \(t\): test execution cost
2D Test Flow vs. 3D Test Flow

Conventional 2D

- wafer fab
 - wafer test
 - assembly & packaging
 - final test

3D-SIC

- wafer fab 1
 - KGD test 1
 - stacking 1+2
 - KGS test 1+2
 - stacking (1+2)+…
 - KGD test 2
 - stacking (1+2)+…
 - …
 - wafer fab n
 - KGD test n
 - stacking (1+2+…)+n
 - assembly & packaging
 - final test

• Terminology
 - **KGD**: Known-Good Die test
 - **KGS**: Known-Good Stack test

 Test access is distinctly different!
 Test contents might be different.

• Better name would have been “Known-**Bad** Die/Stack” test 😊
Required Infrastructure

• Language for test description transfer
 – Core Test Language, CTL (IEEE Std. 1450.6) [Kapur – 2002]

• On-chip Design-for-Test for electrical test access
 – Test wrappers
 • Around cores: IEEE Std. 1500 [Da Silva et al. – 2006]
 • Around dies: to be developed
 • Around full-stack product: IEEE Std. 1149.1 [Parker – 2003]
 – Test Access Mechanisms
 • Intra-die: test bus, TestRail [Marinissen et al. – ITC’98]
 • Inter-die: TestElevator

• EDA support for automated ‘test expansion’ from module-level test into chip-level test
All What Is Known – And Some More…

- All manufacturing defects that can occur in conventional 2D chips, can also occur in 3D-SICs

- Hence, we need to apply all known test methods
 - Logic: stuck-at, transition, delay, VLV, …
 - Memory: array, decoder, control, data-lines, …
 - Analog: INL, THD, …

- In addition:
 1. Tests for new intra-die defects
 2. TSV interconnect tests
Advanced TSV-Interconnect Test

• **Advanced fault models** for TSV interconnects
 – Delay faults

• Testing of *infrastructure* TSV interconnect
 – Power/ground TSV interconnects
 – Clock TSV interconnects

• TSV interconnect **Redundancy & Repair**
 – Crank up bonding yield
 – Evaluate benefit/cost trade-offs
Wrapper Style: P1838

IEEE Std. 1149.1 (‘JTAG’)

- Interface
 - Single-bit for data and control: TDI-TDO
- Wrapper cells with double FFs
 - No ripple-through during shift
- Control via TAP Controller: fixed-protocol Finite State Machine

IEEE Std. 1500

- Interface
 - Mandatory single-bit: WSI-WSO
 - Optional n-bit: WPI-WPO
- Scalable wrapper cells
 - Single-FF cell most common
- Control via flexible instruction shift register
The Role of Advanced DfT Techniques

• **RPCT – Reduced Pad-Count Testing**
 Reduce width of scan-test interface
 – Useful to limit additional probe pads for KGD testing
 – Same test data volume: smaller interface → longer test length

• **TDC – Test Data Compression**
 Reduce off-chip test data volume by on-chip (de-)compression
 – Definitely applicable to 3D-SIC ‘super chips’
 – Great combination with RPCT

• **BIST – Built-In Self-Test**
 On-chip stimulus generation and response evaluation
 – Reduces off-chip test data volume to (virtually) zero
 – Narrow TAMs / TestElevators
 – Protection of proprietary test contents – execute and trust
 – Especially attractive for memory dies – MBIST
3D Test Resource Partitioning

- 3D-SICs offer new opportunities to system architects
- 3D-SICs offer new opportunities to DfT architects
 - Which DfT resource to put in which die?

 ⇒ Test Resource Partitioning

- Example: DRAM-on-Logic

 1. MBIST in DRAM Die
 - "3D-Prepared" DRAM
 - Proprietary memory content does not need to be released

 2. MBIST in Logic Die
 - Drop-in MBIST module provided by DRAM vendor
 - MBIST implemented in logic process technology
 - Communication over TSV-based interconnects
Reliability Faults

- **Intermittent Faults:**
 - unstable hardware activated by environmental changes (lower voltage, temperature)
 - often become permanent faults
 - identifying requires characterization
 - process variation – main cause of IF

- **Transient Faults:**
 - occur because of temporary environmental conditions
 - neutrons and α-particles
 - power supply and interconnect noise
 - electromagnetic interference
 - electrostatic discharge
Reliability Faults (cont)

• Infant Mortality
 – rate worsens due to transistor scaling effects and new process technology and material
• Aging Induced Hard Failures
 – performance degradation over time (burn-in shows)
 – degradation varies over chip-chip and core-core
• Soft Errors
 – Random logic still at risk
 – RAM decreasing SEU per bit
• Low Vmin increases bit failures in memories
• Transient Errors, such as timing faults, crosstalk are major signal integrity problems
Field Reliability Challenge

The error bars account for the range of supply voltage. The SER increases exponentially at 2.1-2.2 decades/volt, e.g. 200X in 2005.

From AMD, Intel, Compaq, 1999
MCU Growth Over Technology Nodes

Source: iRoC
SER Growth at SOC Level

Source: iRoC
Robustness IP for ECC

- Standard ECC architecture provides single bit repair
- RAM multi-bit upset probability depends on cell to cell distance
Thank You

synopsys®
Accelerating Innovation