

Test & Reliability Challenges in Advance Semiconductor Geometries

Rancho Bernardo Inn

Yervant Zorian Fellow & Chief Architect 6/9/13

Contents

- Industry Transformational Trends
- More than Moore Challenges
- Impact on Test, Yield and Reliability
- Multi-Die stacks
- Innovation Forward Challenges
- Conclusions

Industry Transformational Trends

CLOUD COMPUTING SOFTWARE APPLICATIONS USER EXPERIENCE SHORTENED TIME-TO-VOLUME PRESSURE ON R&D PRODUCTIVITY

Consumers Driving "Smart" Electronics

SYNOPSYS[®] Accelerating Innovation

Data Center / Cloud Computing Trends

What Happens in an Internet Minute?

Data Traffic by Forecasts

- By 2016, total data traffic will be 4x 2011
- By 2016, global IP traffic will reach 1.3 zettabytes annually (110 exabytes per month)
- By 2016, there will be nearly 19 billion global network connections (fixed and mobile); the equivalent of two and a half connections for every person on earth.
- By 2016, there will be about 3.4 billion Internet users, which is more than 45% of the world's projected population.

System

Integration

- Before 32nm, new process was introduced every other year
 - Since then, a new process every year

Silicon Complexity

IC Design Expensive and Difficult

	32/28nm node	22/10nm node
Fab costs	\$3B	\$4B – 7B
Process R&D costs	\$1.2B	\$2.1B – 3B
Design costs	\$50M – 90M	\$120M – 500M
Mask costs	\$2M – 3M	\$5M – 8M
EDA costs	\$400M - 500M	\$1.2 – 1.5B

Source: IBS, May 2011

• Intensive customer/partner collaborative developments

Top Semiconductor IP Vendors

Rank	Company	2010	2011	Growth	2011 Share
1	ARM Holdings	575.8	732.5	27.2%	38.3%
2	Synopsys	191.8	236.2	23.2%	12.4%
3	Imagination Te	91.5	126.4	38.1%	6.6%
4	MIPS Technolog	85.3	72.1	-15.5%	3.8%
5	Ceva	44.9	60.2	34.1%	3.2%
6	Silicon Image	38.5	42.8	11.2%	2.2%
7	Rambus	41.4	38.9	-6.0%	2.0%
8	Tensilica	31.5	36.3	15.2%	1.9%
9	Mentor Graphic	27.3	23.6	-13.8%	1.2%
10	AuthenTec	19.6	22.8	16.3%	1.2%
Source: Gartner,	March 2012				

Test & Yield

- Increasing design complexity
 - Many AMS and Interface IP cores
 - Many existing third-party IPs
 - Large number of memory instances
- Exploding digital logic size
 - Greater than 100M gate designs
 - Global design teams
- Increasing test & yield impact
 - Quality DPPM
 - Total memory bit count
 - Yield Optimization
 - Designer productivity
 - Time-to-market and time-to-volume

SoC Test Challenges

on functional performance, area

efficient solution

- hard to detect defects • Need: advanced fault models,
- efficient volume diagnostics & yield analyses

New Defects

Process variation at 20nm is significant, causing bit failures

Sample SOC: DesignWare[®] IP based

SYNOPSYS[®] Accelerating Innovation

SOC Test Solution

Accelerate Higher Quality, Lower Cost Test

Hierarchical Design & Verification

Block B

SoC

Embedded Memory Is Growing Key Driver Of Design Success

Need an efficient solution to test, repair and diagnose thousands of on-chip memories

Process Miniaturization Challenges

- Higher susceptibility and new and speed related fault types
 - Requires expanded test to detect new fault types
 - Requires high speed test capability
- Higher level of miniaturization
 - Needs fault classification and localization
 - Needs on-the-fly monitoring and analysis of volume diagnosis data
 - Requires better support for yield learning and production ramp up

Cost of Unit Out

Source: IC Knowledge, 2005 & IBS 2008

Dramatic Rise in Systematic Yield Issues

- Cheating with physics induces more process variability at each nanometer node
- Some layout features react strongly to variability causing systematic yield issues
- Each successive nanometer node faces more systematic yield loss

**Chart data source - IBS

Embedded Test & Diagnosis

High Manufacturing Test Quality

- Out-of-box enhanced test algorithms
- Fully characterized for each advanced node
- Provides 100% fault coverage
 - New fault types appear at advanced nodes
 - Resistive faults
 - Performance faults
 - Bridging faults
 - Parametric variation
 - Generic algorithms are not as granular, resulting in test escapes
- Fault injection based analysis

Fault Types
Static/dynamic
Write mask
Weak
Address decoder
Bit-line leakage
Intra & Inter-port
Delay coupling
Data setup/hold

Process Variation- Read Failures in SRAM

Read Failures should be tested in (VDD_max,T_max) corner

- More than 22% variation of Vth brings to a failure

for 30% L and W variation

Repair Solution Impacts Memory Yields

Amount of Memory on the die (Mb)

Repair Efficiency

- Redundancy allocation algorithm maximizes available repair resources
 - Numerous types and amount of redundancies
- Repair methodologies to maximize repair
 - Multi-corner cumulative repair
 - Multi-zone fuse containers
 - In-system periodic repair capability
 - Fastest system recovery with multi-power island chips

Why FinFETs

As predicted for many years, but often postponed, the device level of the chip is finally changing

- "Conventional" planar transistors are reaching the limits of scaling and have become "leaky": They use too much power
- FinFETs enable products with higher performance and lower power consumption
- There are alternatives, but FinFETs promise better continuation of Moore's Law

How FinFETs Work

Field effect transistors: The field from the gate controls the channel

FinFET

Single gate channel control is limited at 20nm and below

"**Multiple" gate** surrounds a thin channel and can "fully deplete" it of carriers. This results in much better electrical characteristics.

FinFET Advantage: Intel's Perspective

- Benefit of Intel's FinFET with respect to Intel's 32nm planar technology
 - Tri-Gate transistors provide an unprecedented 37% delay improvement at low voltage.
 - Tri-Gate transistors can operate at lower voltage, providing ~50% active power reduction

FinFET Impact on Design for Test

SoC Designers

Libraries and tools will minimize the impact on digital design.

The impact of FinFETs is largest below Metal 1

Double patterning and restricted design rules, while often associated with FinFETs, are not unique to them and also necessary for planar technologies

IP Designers Standard cells, memory compilers and custom design are impacted.

Foundries Significantly impacted.

FinFETs in SRAMs

- Special focus on low voltage operation
 - Read assist and write assist circuitry to improve robustness
 - Compile time options to maximize
- Large SRAM macros provide alternatives to embedded DRAMs
- Enhancing Memory Test & Repair to handle FinFET related failures
 - Fault models for planar FETs need to be extended to cover FinFETs
 - Further enhancements in compression of test and repair algorithms

Source: IBM Research, 2010 Symposium on VLSI Technology

Realistic Faults in FinFET SRAMs

- Traditional faults
 - stuck-at fault, stuck-open fault, transition fault, address decoder fault, coupling fault, etc.
- Process variation faults
 - Transistor threshold voltage is affected by gate length (L) and fin thickness (Tfin).
- FinFET specific faults
 - Opens in FinFET transistor back gate cause delay and leakage faults (transistor threshold voltage is affected by back gate voltage)

Detection Programmable

Automated Rapid Fault Isolation and Identification

SYNOPSYS[®] Accelerating Innovation

Multi-level Precision Diagnostics

Low Cost Failure Diagnostics Solution

SYNOPSYS[®] Accelerating Innovation

Yield Optimization

Tester

- Embedded Test & Repair Yield Optimization
 - Test/Repair IP Insertion
 - Vector Generation
 - Localization & Signatures •

- - Failure Visualizations
 - Cross-Domain Correlations
 - Dominant Failure Modes

Identifying Dominant Failure Mechanism How to get the largest yield improvement

- Rise in systematic defects – Very few dirt particles or fall-on defects
- 100s of failed dies in first silicon
- 10-50 fault candidates per failed and diagnosed die
- 15-20 metal segments & Via per candidate net

• 100x10x10 = 10k sites for FA

- For each silicon lot during ramp

• FA cycle time per site: 4-8 hours – Can manage <10 sites only

How Does Volume Diagnostics Help?

- Volume Diagnostics
 - Statistical Analysis of Diagnostics results from multiple failing chips
 - Identifies systematic, yield-limiting issues by using design data
 - Produce outputs for Physical Failure Analysis (PFA)

Design-Centric Volume Diagnostics

Multi-Tool Manual Flow

2-3 Weeks

*PFA – Physical Failure Analysis

- An order of magnitude faster systematic failure localization
- Prioritization of failure types based on yield impact
- Success in capturing dominant systematic failure mechanisms

Shortest Time to Volume

Trends for 3D Stacking

SYNOPSYS[®] Accelerating Innovation

3D Packaging in cell phones

- 3D packaging used in cell phones for several years
 - Stacked dies with Wire bond

Memory

- Package on Package (PoP)

Accelerating Innovation

Beyond SoC: SiP Alternatives

- SoC: System-on-Chip. Integrate combinations of logic, processor, SRAM, DSP, A/RF, DRAM, NVM
- SiP: 3D Stacked Dies
 - 1. Non-TSV
 - bare die stacking: wirebond, flipchip, embedded die substrate
 - package stacking: PoP, PiP
 - 2. TSV
 - via first, via middle, via last

Evolution in 3D Technologies

non-TSV

Limitations

- Peripheral bonds only
- Long wire bonds (high inductance, high crosstalk, low speed interconnect)
- Limited to low-density interconnects and with specific I/O pad routing

TSV

Benefits

- Area placement
- Excellent electrical characteristics
- High densities
- Orders of magnitude higher interconnect densities between dies

Through Silicon Via Pros and Cons

- Pros
 - Allow even smaller package outline
 - No pad extension needed
 - Lower sensitivity to foreign material at Camera assembly
 - Wire bonding compatible layout
 - Reflow process compatible
 - Better interconnect routing capability
- Cons
 - More complex technology
 - Glass
 - Silicon
 - Back-end processes
 - Cost

Through via contacts From top to bottom

3D Stacking is Not New...^{But TSVs Are!}

Multi-Chip Packaging

- Dense integration
- Heterogeneous technologies

Vertical Stacking

- Denser integration
- Smaller footprint
- Through-Silicon Vias (TSVs)
 - Even denser integration
 - Increased bandwidth
 - Increased performance
 - Lower power dissipation
 - Lower manufacturing cost

Yield Implication Due to 3D Levels

SYNOPSYS[®] Accelerating Innovation

Tests for 3D Induced Effects

- Test Coverage for TSV Interconnect
- Defect Coverage for due to
 - Thinning Process
 - Thermal Dissipation

Known Good Die Challenge:

Conventional burn-in challenge

- $\odot\,$ Full speed test and burn-in prior to packaging
- \odot Higher pin count with finer pitch
- $\odot\,$ Increased functionality and frequency
- KGD requires
 - $\odot\,$ Extra stress during probe, carriers, or WLBI
- Necessary for SiP productio

Wafer Level Burn-in and Test

Greatly simplifies backend IC fabrication line

Wafer-level burn-in and test

Conventional 2D Test Flow

Conventional 2D

- Main role of Final Test (FT): guarantee outgoing product quality
- Main role of Wafer Test (WT): prevent unnecessary package cost
- WT executed only if benefits exceed costs: $(1-y) \cdot d \cdot p > t$

with

- y: fabrication yield
- *d*: fraction of faulty products that the WT can <u>d</u>etect ('test quality')
- *p*: <u>preventable product cost</u>
- *t*: <u>t</u>est execution cost

2D Test Flow vs. 3D Test Flow

- Terminology
 - **KGD** : Known-Good Die test
 - KGS : Known-Good Stack test

Test access is distinctly different! Test contents might be different.

Better name would have been "Known-<u>Bad</u> Die/Stack" test ☺

Required Infrastructure

- Language for test description transfer
 - Core Test Language, CTL (IEEE Std. 1450.6) [Kapur 2002]
- On-chip Design-for-Test for electrical test access
 - Test wrappers
 - Around cores: IEEE Std. 1500 [Da Silva et al. 2006]
 - Around dies: to be developed
 - Around full-stack product: IEEE Std. 1149.1 [Parker 2003]
 - Test Access Mechanisms
 - Intra-die: test bus, TestRail [Marinissen et al. ITC'98]
 - Inter-die: TestElevator

• EDA support for automated 'test expansion' from module-level test into chip-level test

All What Is Known – And Some More...

- All manufacturing defects that can occur in conventional 2D chips, can also occur in 3D-SICs
- Hence, we need to apply all known test methods
 - Logic: stuck-at, transition, delay, VLV, ...
 - Memory: array, decoder, control, data-lines, ...
 - Analog: INL, THD, ...
- In addition:
 - 1. Tests for new intra-die defects
 - 2. TSV interconnect tests

Advanced TSV-Interconnect Test

- Advanced fault models for TSV interconnects
 - Delay faults
- Testing of *infrastructure* TSV interconnect
 - Power/ground TSV interconnects
 - Clock TSV interconnects
- TSV interconnect *Redundancy & Repair*
 - Crank up bonding yield
 - Evaluate benefit/cost trade-offs

Wrapper Style: P1838

IEEE Std. 1149.1 ('JTAG')

- Interface
 - Single-bit for data and control: TDI-TDO
- Wrapper cells with double FFs
 - No ripple-through during shift
- Control via TAP Controller: fixed-protocol Finite State Machine

IEEE Std. 1500

- Interface
 - Mandatory single-bit: WSI-WSO
 - Optional n-bit: WPI-WPO
- Scalable wrapper cells
 - Single-FF cell most common
- Control via flexible instruction shift register

The Role of Advanced DfT Techniques

- **RPCT Reduced Pad-Count Testing** Reduce width of scan-test interface
 - Useful to limit additional probe pads for KGD testing
 - Same test data volume: smaller interface \rightarrow longer test length

• TDC – Test Data Compression

Reduce off-chip test data volume by on-chip (de-)compression

- Definitely applicable to 3D-SIC 'super chips'
- Great combination with RPCT
- BIST Built-In Self-Test

On-chip stimulus generation and response evaluation

- Reduces off-chip test data volume to (virtually) zero
- Narrow TAMs / TestElevators
- Protection of proprietary test contents execute and trust
- Especially attractive for memory dies MBIST

3D Test Resource Partitioning

- 3D-SICs offer new opportunities to system architects
- 3D-SICs offer new opportunities to DfT architects
 - Which DfT resource to put in which die?
 - \Rightarrow Test Resource Partitioning
- Example: DRAM-on-Logic
 - 1. MBIST in DRAM Die
 - "3D-Prepared" DRAM
 - Proprietary memory content does not need to be released
 - 2. MBIST in Logic Die
 - Drop-in MBIST module provided by DRAM vendor
 - MBIST implemented in logic process technology
 - Communication over TSV-based interconnects

Reliability Faults

- Intermittent Faults:
 - unstable hardware activated by environmental changes (lower voltage, temperature)
 - often become permanent faults
 - identifying requires characterization
 - process variation main cause of IF
- Transient Faults:
 - occur because of temporary environmental conditions
 - neutrons and α -particles
 - power supply and interconnect noise
 - electromagnetic interference
 - electrostatic discharge

Reliability Faults (cont)

- Infant Mortality
 - rate worsens due to transistor scaling effects and new process technology and material
- Aging Induced Hard Failures
 - performance degradation over time (burn-in shows)
 - degradation varies over chip-chip and core-core
- Soft Errors
 - Random logic still at risk
 - RAM decreasing SEU per bit
- Low Vmin increases bit failures in memories
- Transient Errors, such as timing faults, crosstalk are major signal integrity problems

Field Reliability Challenge

From AMD, Intel, Compaq, 1999

SYNOPSYS[®] Accelerating Innovation

MCU Growth Over Technology Nodes

Source: iRoC

SER Growth at SOC Level

Source: iRoC

Robustness IP for ECC

• Standard ECC architecture provides single bit repair

Accelerating Innovation

SYNOPSYS

• RAM multi-bit upset probability depends on cell to cell distance

Thank You

SYNOPSYS® Accelerating Innovation