

A Study on CCC of Fine Pitch Vertical Probe; Simplified CCC Formula and its Verification

Sanghun Shin Jong-Hyun Park Willtechnology Co., Ltd.

Overview

- Background
- CCC Methodology Review
 - ISMI(09'), Current spike(10'), FFI(11')
- Former CCC Formulae
- Probe CCC Test under Varying Temperature: T-CCC
- Correlation
- Conclusion
- Future Work

Background

Shrinking probe pitch

- Leads to the probe fusing & burnt
- Platinum group metals have limitation for the probe

Expectation of high temperature performance

- Requires higher CCC value with fine pitch
- Requires more thermal reliability

Previous CCC studies were focused on "CRES"

- Focus moved to "Temperature" and its relative parameters
- A study of temperature dependent CCC did not presented in SWTW so far

CCC Methodology Review

• ISMI (SWTW, 2009)

- Step ramp after steady current
 - \rightarrow 20% force reduction test

Current spike & Lifetime reliability test (SWTW, 2010)

- Step ramp after pulse current
 - \rightarrow Current spike CCC testing
 - \rightarrow Lifetime reliability CCC testing

FFI standard (SWTW, 2011)

Continuous ramp
→ Ramp up current until fail
→ Long term stress

S.H. Shin, J.H. Park

June 8-11, 2014

Former CCC Formulae

• Joule heating

Joule heating equation

 $P = I^2 \times Cres$

Joule heating upon temperature variation
Joule heating equation <u>for temperature dependant</u>

$$\Delta V = RI = [\rho_0 + \alpha (T - T_{ref})] \frac{L}{A}I$$

- Power system design
 - CCC predicted equation

$$I = \frac{A}{L} \sqrt{\frac{k}{\rho}} \sqrt{\Delta T}$$

• T-CCC mechanism in terms of a probe

The heat generation equals to the dissipation

 $- Q_{generated} = Q_{dissip.convection} + Q_{dissip.conduction}$

In case of pin array

• T-CCC mechanism of the array probes

- Temperature gradient when the probes form array
- Effective factor:
 - Coefficient of convection (*h*)
 - Ambient temperature (T_a)

T-CCC Formulation

• New CCC formula including temp. variation: T-CCC

- T-CCC parameters :
 - Resistivity @Initial temperature (ρ_0)
 - Diameter (*d*)
 - Probe length (L)
 - Temperature (*T_{ref}*)
 - Thermal diffusivity (α)
 - Thermal conductivity (k)
 - Thermal convection coefficient (h)
 - Multiplier (*b*)

$$I = A \sqrt{\frac{\Delta T}{\rho_0 + \alpha (T - T_{ref})}} \cdot \sqrt{\frac{k\beta^2}{L^2} + \frac{4h}{d}}$$

T-CCC Formulation

• New CCC formula including temp. variation: T-CCC

- T-CCC parameters :
 - Resistivity, function of temperature (ρ)
 - Probe length (L)
 - Temperature (T)
 - Area (A)
 - Simplified multiplier (β')

Where *k*, *h* are considered as constant due to:

- Thermal conductivity (k) is unchanged in 25° C to 100° C
- The coefficient of convection (*h*) is negligible.

$$CCC = \beta' \frac{A}{L} \sqrt{\frac{1}{\rho(T)}}$$

T-CCC Test

T-CCC measurement setup

ISMI CCC test setup + Temperature control system

CCC vs. Temp of P7 (ISMI guideline)

- T-CCC test temperature
 - RT, 60°C and 90°C

Results

- CCC \uparrow as probe dia. \uparrow
 - $CCC \propto A$
- CCC ↓ as temperature ↑
 - CCC $\propto \rho^{-1/2}$
- Determinants:
 - Probe tip diameter
 - Temperature is highly relative to resistivity
 - The resistivity affect CCC

June 8-11, 2014

CCC vs. Temp of Alloy W1 (ISMI guideline)

- T-CCC test temperature
 - RT, 60°C and 90°C

Results

- CCC \uparrow as probe dia. \uparrow
 - $CCC \propto A$
- CCC \downarrow as temperature \uparrow
 - CCC $\propto \rho^{-1/2}$

Alloy W1 has higher CCC

Correlation of P7

between experimental data and formula

Error of CCC prediction for P7 probe

- Error range: ≤ <u>8%</u>
- Probe length uniformity
- The other geometric error
- Resistivity tolerance

• Difference of k

- $k \leq 3\%$
- Almost constant at RT to $90^{\circ}C$

Correlation of Alloy W1 between experimental data and formula

Error of CCC prediction for "Alloy W1" probe

- − Error range: $\leq 4\%$
- Probe length uniformity
- The other geometric error
- Resistivity tolerance

Decisive parameter: Resistivity!

June 8-11, 2014

IEEE Workshop

Conclusion

- The high density of probe pin array causes the increasing temperature in the center region.
 - CCC decreased as the resistivity increased.
- Resistivity of the material was a critical factor in T-CCC formula.
 - Temperature $\uparrow \rightarrow$ Resistivity $\uparrow \rightarrow$ CCC \downarrow
 - Thermal conductivity, k was neglected
 - Convection, h was neglected
- Geometric factors-diameter and length of the probe-were also contributed the CCC result
 - Assumed all of the probes were identical

Conclusion

- Willtechnology designed "Alloy W1" showed much higher CCC than P7 probe
- Calculated CCC values by T-CCC formula were similar to the experimental results.
 - The effect of neglected parameters in the T-CCC formula is less than 8% of error

	Predicted error (25°C~90°C)
Design A (P7)	< 8%
Design B (P7)	< 4%
Design A (W1)	< 4%

Future work

- Effect of probe pin array (i.e. array size, pitch, and clearance) in T-CCC
- A research of parametric formulation for a major parameter, CRES
- Effect of surface coating in T-CCC
- A research of CCC variation depending on tip shaping

Reference

- E Boyd Daniels, *"ISMI Probe Council, Current Carrying Capability Measurement Standard"*, SWTW 2009.
- Rehan Kazmi et al., "Measuring Current Carrying Capability (CCC) of Vertical Probes", SWTW 2010.
- Matthew C. Zeeman, "A New Methodology for Assessing the Current Carrying Capability of Probes used at SORT", SWTW 2010.
- Michael Huebner, "A Hot Topic: Current Carrying Capacity, Tip Melting and Arcing", SWTW 2011.
- Raffaele Vallauri, "TPEG[™]: A New Vertical MEMS Solution for High Current, Low Pitch Applications", SWTW 2012.
- Jitesh Shah, "Estimating Bond Wire Current-Carrying Capacity", Power Systems Design, Jul/Aug 2012.

S.H. Shin, J.H. Park

June 8-11, 2014

IEEE Workshop

Acknowledgements

- Willtechnology R&D team
- So Young An, Hojoon Lee

Sanghun Shin General manager Willtechnology Co., Ltd. (82-31) 240-5580 E: sh.shin@willtechnology.co.kr

Kang-Dae Lee

Assistant Manager Willtechnology Co., Ltd. (82-31) 240-5703 E: kd.lee@willtechnology.co.kr Jong-Hyun Park Assistant Manager Willtechnology Co., Ltd. (82-31) 240-5574 E: park.jh@willtechnology.co.kr

Young-Bu Kim CTO Willtechnology Co., Ltd. (82-31) 240-5588 E: yb.kim@willtechnology.co.kr

S.H. Shin, J.H. Park

June 8-11, 2014

IEEE Workshop