

IEEE SW Test Workshop Semiconductor Wafer Test Workshop June 8 - 11, 2014 | San Diego, California

Comparison of Various RF Calibration Techniques in Production: Which is Right for You?

Daniel Bock, Ph.D.

Overview

- Introduction
- How does Calibration Work
- Types of Calibrations
- Comparison of Calibration Types
- Summary

IEEE Workshop

2

Why do you need Calibration?

- You want a guarantee that you are measuring your DUT and NOT you test equipment
 - The Probes and cabling introduces errors
 - However, Calibration is able to remove those errors

How does Calibration Work

- In characterizes the RF performance parameters of your test hardware
- Then mathematically remove the parameters

D. Bock

A Little Math....

<u>s wtw</u>

D. Bock

June 8-11, 2014

IEEE Workshop

How to get to the measurement system error terms • One characterizes the RF parameters of your system by measuring some 'known' RF structures

- Open
- Short
- Load
- Thru

 Calibration can be various combinations of these standards based on your needs

June 8-11, 2014

IEEE Workshop

Calibration Substrates

- The choice of the calibration substrate is important based on what you want to do:
 - Edge of pad
 - End of transmission line
 - Type of Calibration
 - Frequency Range
 - Tip Pitch

June 8-11, 2014

More about the Reference Plane...

- The reference plane can be placed ALMOST anywhere in the RF signal path
 - Can located at the:
 - Edge of the Pad
 - End of a transmission line to the DUT

Calibration to edge of Pads

Place standards connected to pads

- Allows for removal of the full contact area
- For high frequency, requires accurate Probe-To-Pad-Alignment to be successful
- Highest accuracy by using standards on wafer, but good accuracy for can be achieved using ISS standards, especially in KGD applications

Calibration to end of Xline

- This will generally require the use of on wafer standards
 - Make a transmission line like that connected to the DUT, and then place your calibration standards

Cal Coefficients

- Cal Coefficients are values that characterize the RF performance of the standards
 - They are never ideal Opens, Short, Loads, and the Thru has a characteristic length
 - These are input into the previous equations as the known terms using the reflection coefficient

$$\Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$

But... Do you need Cal Coeff?

- In some situations, you can actually ignore the Cal Coeff.
 - Depends upon Max Frequency and value of Cal Coeff.
 - Evaluated for 150 μ m GSG for the model
 - C_open = 3.5 fF
 - L_load = -1.7 pH
 - L_short = 4.8 pH

Plot of Variation of Open and Short

The varition is dominated by the Short

At less than 20 GHz, it is less than 0.1 dB off from ideal

Calibration Options

- There are several options available on the test floor to calibrate your probe card
- The selection depends upon several factors
 - Accuracy needed
 - Type of Probe Card

TRL

• NIST traceable standard Calibration technique

- Mulit-line TRL (Thru-Reflect-Line)
- Uses multiple transmission lines as the standards
- Measurements referenced to the line impedance
- Limited frequency range
 - 3 lines for 2-18 GHz
- Requires multiple probe spacing
- Not suitable for fixed spacing probes

Thru-Reflect-Reflect- Match (LRRM)

- Compares favorably to TRL
- In Cascade's Wincal
- Does not need well defined standards other than the thru
 - Known length and impedance

IEEE Workshop

SOLT

Short-Open-Load-Thru

- Needs well defined standards
- L-short, C-open, L-load, and Thru length
- Uses off wafer standards
- Sensitive to the probe placement

June 8-11, 2014

SOLR

SOLR is similar to SOLT

- Needs well defined Load, Short, and Open
- The thru does not need to be well defined, just approximate length

Convenient for use with probe cards

June 8-11, 2014

 Fixed probe spacing and are usually not inline with eachother

2nd Tier Calibration with SOL

• What is 2nd Tier?

- 1. Calibrate to the end of the cable using standards
- 2. Measure SOL to generate 2 port parameters
 - Requires reciprocal probe card (which is true for Pyramid Probes)
- 3. The 2-port parameters are then combined with the first calibration
- Does not require a thru for calibration

June 8-11, 2014

- Can be compared favorably to SOLR calibration in terms of accuracy
- WinCal and most VNAs have this programmed into them

IEEE Workshop

SO

- Only needs Short-Open
- Can be done with:
 - Probe card in air for open
 - Probe card in contact with a metal wafer
- Assumes that ALL losses are due insertion losses, IE, no RL

 Works well down to probe cards with -12 dB RL or better

SO

• Can be done a few ways:

- Using S-parameters provided, use the loss factors as a correction term at specific frequencies
- Measure golden die that have been characterized using a different method (such as Infinity) that is calibrated to the tips
 - Comparing the two measurements, the loss of the probe card is known
 - Measurements show that the loss is repeatable and does not change much when a new core is placed in the PCB
- However, this is the least accurate
 - No phase correction
 - Is done at only a few frequencies
- Easiest to implement of the calibration options

Comparison of Methods using Thrus - Magnitude

SOLT, SOLR, and LRRM are all very good

 Within 0.05 dB of each other using the same calibration files up to 67 GHz

D. Bock

SOL Compared to LRRM

SOL is reasonable for KGD testing, being within +/- 0.5 dB out to 50 GHz when compared to LRRM

D. Bock

SO Comparison to SOL

- Short-Open works well as long as the RL is better than -12 dB
 - Because of the assumption that ALL losses are due to insertion loss

Difference in SO and SOL with RL Comparing SO and SOL, as long as RL is less than -12 dB, then SO is within 1 dB of SOL

Comparsion of Calibration Options

Calibration Method	Absolute Accuracy	Probe Card Support
SOLT	Fair	Fair -due to usually not having straight thrus
TRL	Best	Poor -due to inability to have variable length thrus
LRM/LRRM	Good	Fair -due to usually not having straight thrus
SOLR	Good	Best -works best with bends in thrus
SOL	Fair	Fair Works well of KGD test
SO	Low	Fair to Poor (Depending upon RL) Ease of use due to not needing precise alignment

SMLM

How to Verify your Calibration? Trust me..... This depends upon the type of calibration, and how accurate For more accurate measurements – SOLT, SOLR, SOL, SO • Use thru Do not use short, open, or load – user defined – LRRM, TRL • Use open or short Do not use thru – user defined

June 8-11, 2014

IEEE Workshop

Now Really Trust Me....

- For lower accuracy applications, you can consider
 - Remeasure your standards (even if using SOLT, SOLR, and SOL)
 - If some measurement was wrong (bad alignment;bad contact), it will appear immediately as excessive loss or gain
 - Compare to previous measurement for system drift

Summary

Calibration has a lot of different considerations

 The best option depends upon your needs and ease of setup

Questions?

IEEE Workshop