

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Transferable Fine-Pitch Probes

S.L. Wright, Y. Liu, B. Dang IBM T.J. Watson Research Center

Overview

- Motivation (3D Si, "smart" probe)
- Transferrable probe tip process
- Issues
- Test vehicles, apparatus
- Contact resistance, force, max current
- Touchdown quality to date
- Probe stations in the future

3D Integration

Benefits	Challenges	
Reduced package thickness and area	Bond and assembly	
Reduced package complexity	Cooling	Z
Improved performance (fine pitch & short length interconnections)	Design methodology	
Mixed chip technologies	Test for KGD, KGS	
Reduced cost (holistic view)	Increased cost (Si processing viewpoint)	F

Future-fab.com

S.L. Wright

Fine Pitch / 3D Probing

"Poll" the SMART probe for analyzed test results

silicon mold (anisotropic etch)

Fill with metal and build metal pillar

1st Generation

Tips are 4-sided pyramids with 70.5 degree cone angle.

SWTW

S.L. Wright

June 8-11, 2014

2nd Generation

June 8-11, 2014

Transferable probe tips on 50 µm 3D silicon chip

Uniform probe marks

Solder recovery at 250° C in formic acid atmosphere.

IEEE Workshop

S.L. Wright

June 8-11, 2014

Transferable Tips

- Low-temp process
- Variety of possible tip materials
- Variety of possible substrates
 - Silicon, ceramic, glass, laminate, MEMs structure
- Precise size, shape, location
- Precisely planar
- Non-compliant versions to-date 0
 - Large compliance requires MEMs structure

IBM Zurich Nanotip (2014)

- "nm-sized" tip, 1000 °C
- "chisel" into polymer
- 10 nm resolution
- ≤ 40nm penetration
- 11x14 µm Panda image in 11 minutes
- 30 µm wide Canada image, 1 Mpix in 1 min? (McGill Univ)
- Licensed to SwissLitho
 - "NanoFrazor"

Hybrid Probe Mode

Hybrid Probe Mode w/"Smart" Temporary Chip Attach (TCA) Wafer

Issues

- Convert processor chip into probe head
 - Low-temp tip transfer process on thin die
- Need 3D Si technology for space transformer
- Tip integrity and contact
 - Vertical indent (no scrub) with small force
 - Thermal expansion issues with high-power test?
 - Compliance needed?
- Damaged probe head?
 - Throw it away!

Compliance / Planarity

High interconnection yield with flip-chip bond

- Routine lab yield 99.999 to 99.9999 % (50 μm pitch)
- Pads/melted bumps \rightarrow tips/bumps

Probe compliance issues

- Bump plating non-uniformity scales with thickness
 - 10% of 100 μm bump (200 μm pitch) is 10 μm
 - 10% of 15 μm bump (50 μm pitch) is 1.5 μm
- Probe non-uniformity
 - Large over-drive required for many probe technologies
 - Not an issue with transferable tips.

June 8-11, 2014

- Particle contamination
- Do we need compliance?

PA300 (Suss/Cascade)

Chuck camera: Probe theta correction Probe mark position Parallelism

Platen camera: Chuck theta Die mark position "blob" position

Side camera: Height adjustment "near contact" view Rough parallelism

Scope camera: Initial setup Parallelism Post-test inspection

Note: none of the axes are perfectly aligned.

S.L. Wright

Hybrid Mode

Top vacuum chuck w/bumped die

Manual probes

Bottom chuck w/probe tip die

Force Plot

Touchdown has "stabilized" when all four forces increase at the same rate.

SWTW

S.L. Wright

June 8-11, 2014

Probe Marks

"max" indent

8x8 μ m pyramid indent = 5.6 μ m indent tip depth

S.L. Wright

June 8-11, 2014

Test Vehicle

Top die (bumped)

Bottom die (tip transfer)

Contact resistance sites (4-pt)

50 μm pitch 45,406 bumps (total) 12,644 electrically-testable bumps Chain lengths from 1 to 230 links

June 8-11, 2014

SWIW

IEEE Workshop

23

3-pt Contact Resistance

Additional force of ~ 0.01 gm/bump reduced contact resistance by ~ 40 m Ω .

(WTW

S.L. Wright

June 8-11, 2014

4-pt Contact Resistance

Rc depends upon probe force, "good" contact at 0.05 - 0.5 g/bump. Lowest Rc measured thus far ~ 30 m Ω Typical Rc = 10-30 m Ω in joined parts (melted bump/pad)

S.L. Wright

June 8-11, 2014

Contact Resistance and Force

SWTW

Chain Resistance

Linear fit to data up to 21 links.

Touchdown contact yield of 99.9% demonstrated thus far. -Limited by test parameters, not test vehicle.

DC Current Stress: 2-bump chain

Joule heating apparent at ~ 500 mA..... 1A short-duration current should be acceptable.

S.L. Wright

June 8-11, 2014

Power Dissipation in 2-bump Chain

Post-Mortem

Current = 2A

Current = 2A

Post-Mortem (cont'd)

Tip indent w/oxidation

Solder residue

Pull-out on bump side

S.L. Wright

June 8-11, 2014

Touchdown Alignment

- Stage movement accuracy ~ ± 1 μm (x,y,z)
- Homemade "semi-automatic" alignment procedure
 - $X, Y, \Theta \rightarrow \Delta x, \Delta y \sim \pm 1 \ \mu m$
- Parallelism is biggest challenge
 - No auto-leveling capability in prober (co-parallelism)
 - Have not yet found conditions for "gimbal-ing"
 - $-\Delta z \simeq \pm 2 \ \mu m$ over 12 mm die (0.01 deg tilt)
- No probe damage or debris seen thus far
 - < 100 touchdowns</p>

Future Probe Stations

- Area-array probing at pitches < 50 μ m
 - > 100,000 connections
- Clean tool environment
- Flip-chip bonder capabilities
 - Soften or melt solder
 - Controlled ambient
 - Vacuum, plasma, formic acid
- Inexpensive, high-performance "smart" probe heads

Transferrable Probe Tip (TPT) technology

Fine-pitch capability

- < 50 μm</p>

Active-device probe head ("smart probe")

Low cost, high-speed test

Vertical probe without compliance

Minimal damage and debris
High current capability
Disposable probe head

300 mm wafer capability.....

S.L. Wright

June 8-11, 2014

