

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Low Temperature Test Implementation and Stabilization

Daniel Fresquez, Haris Imamovic, Abrar Mohammed

Texas Instruments Inc.

Outline

- Cold Probe Why is it needed?
- Problem Statement
- Current Test Flows and how they are changing
- Measurement/Methodology
- Enabling Cold Probe
- Impact: Effectiveness & cost impact
- Acknowledgments

Cold Probe – Why is it needed?

- Need to Reduce Test Cost
 - Test cost is driven by multiple test insertions (up to 5X) and long test times specifically for flash memory flows.
 - Provide a stronger correlation to our packaged flows for direct wafer sales
 - Improve quality for our customers
 - Customers expect spec conditions duplicated at test.

0

Objective

- Challenge: Provide a cost effective low temperature test solution for the TI product line.
- Show the effects of -40°C at test.
- Provide high quality/reliability standards for package flows and direct wafer sales.
 - Scrapping at the package level with multiple ICs for 1 faulty IC is expensive.

Obstacles:

- Protecting production material and high cost probe cards from thermal expansion and contraction.
- Provide adequate moisture shielding to inhibit condensation as well as prevent current leakage during testing.

June 8-11, 2014

- Post Burn in Coverage (Most Flash / All Digital & Mixed signal tests) are being moved to MP2.
 - The team was challenged with demonstrating room temperature to low temperature correlation, prove that parametrics moved predictably with temperature, and provide full test coverage.

D. Fresquez, et al.

June 8-11, 2014

Cold Temp Probe Results

VT/DRL parameter correlation (Room vs. -40°C - Programmed at 30°C)

•VT0's, VT1's, DRL deltas & pump measurements remained stable at the -40°C insertion.

- Above are the post MP1 DRL VT's measured at 30° C & then at -40° C temp during the MP2 combined flow.
- VT0 moved up by ~70mV at -40°C (expected).
- VT1's moved up by about ~90mV at -40°C (expected).
- Data Retention Loss deltas moved by the same amount due to the VT moves.
- Per die analysis shows predictable results post MP1 and when tests were repeated post MP2.

D. Fresquez, et al.

June 8-11, 2014

Cold Temp Probe Results

Room Temperature vs. -40°C Slow Program Results

Shown above are pulse count comparison & slow program test times for room vs. -40°C probe insertions.

This data set is not for the same wafer but an engineering wafer at -40°C vs. production data from another wafer from 0 the same lot.

- Fewer pulses needed to perform the slow program & lesser time needed at -40°C.
- This is resulted in a unexpected test time reduction.
- The slow program at -40°C takes ~23 seconds as compared to 37 seconds at 30°C.

7

Cold Temp Probe Results

• Engineering Evaluation

- Probe MP2 at Room with short flow material (Ireference, Pump & DRL only No changes to the flash state).
- Probe MP2 at -40C (Full Low Temperature Flow).
- Probe MP3 at 30C (Ireference, Pump & DRL only No changes to flash state).
 - These measurements were used as a reference for 30°C vs 40°C correlations for post MP2 VT's.

• Final Results

- During a 3X3 lot evaluation limits were pushed out by 35% at MP2 to be able to see the whole VT, pump measurement distributions and final test comparison.
- Correlation at final test was one to one.
- No changes were seen to Go-Nogo type tests (Flash/Digital).
- The team was able to demonstrate 30°C to 40°C characterization and prove that parametrics moved predictably.
- Characterization shmoos where utilized to assess the margins at -40°C and then compared to 30°C shmoos.
- All the shmoos looked clean with some shmoos having shmoo holes. Similar holes were observed in the 30°C plots.

Test Cell Measurement Methodology

June 8-11, 2014

Measurement Methods

- Profile chuck temperature during setup and probing
- Profile probe card temperature during setup and probing
 - Modify the probe card to allow insertion of temperature probes at three positions adjacent to probe needles and probe needle support
 - Profile the probe chamber environment.
 - Humidity (Dew Point temperature)
 - Air flow (Compressed Dry Air (CDA) purge requirements)
- Correlate measurement data to probe position effects
- Develop methods to counter effects

SenseArray Integrated Wafer

- 17 imbedded thermocouples
- Sampling rate set at 1 second intervals during 30°C to -40°C and 30°C to -55°C cool down.
- Loaded the wafer on the chuck for approximately 60 minutes.

Chuck Temperature Profiles

• Vendor A chuck temperature gradient at -40°C: 6.6°C

Vendor B chuck temperature gradient at -40°C : 0.8°C

After an elapsed time of 35 minutes the vendor A chuck temperature gradient remained at a delta of 6°C
The vendor B chuck had stabilized to <1°C in 27 minutes
Both vendors had equivalent CDA consumption rates and maintained <-70°C dew point temperatures

Probe Card FX401 Temperature Profiles

Scrub Alignment at -40°C

Thermal affects were causing needle movement.
Greater than 30 um lateral drift seen between center and edge of wafer
Re-alignment routines required to maintain probe to pad alignment (PTPA)

Enabling Cold Probe: Test Cell Hardware

Probe Card Modifications

Sealed PC with wagon wheel stiffener.

- Stainless Steel stiffener plate is utilized to limit thermal movement
- Ceramic shielding cap is utilized to maintain card temperature
- No through hole vias all vias must be sealed (silver coat epoxy) to maintain probe chamber environment

VLCT Test Cell Hardware • Coolant / Air Cooled System •Sealed Native Ring / RASP Interface - Invar pan utilized to prevent drift •Sealed UF300/3000 with: Purge air distribution system - Hygrometer to monitor dew point

D. Fresquez, et al.

June 8-11, 2014

IEEE Workshop

<u>SMIM</u>

IFlex Test Cell Hardware

Sealed towers

SC designed I/O panel with Tester Purge inlet & Backside Purge with Flow Meter and pressure gauge

Backside Purge with Flow Meter and pressure gauge

Advantages: insid -Reduce moisture issues -Reduce setup/conversion failures -Increase MTBA and Output D. Fresquez, et al. June 8-11, 2014

Back side purge diffusers attached inside IFLEX Test Head

Probe Insert

Implementation of the Invar Head Stage

<u>High Temperature Stabilization (140°C Trials)</u>:

- Invar head stages were utilized on all test cells testing above 75°C
- Ceramic head stages were phased out due to maintenance issues
- Probe card needle movement was reduced to ~20 um in the Z axis

Lessons Learned Applied to Cold Probe

Testing Temp: -40°C

Measurement	ST4xx Ceramic	ST4xx Invar	ST8xx Ceramic	ST8xx Invar	ST9xx Invar						
Within Wafer Delta Z (um)	82.5	65.8	32.6	26	20.5						

Low Temperature Stabilization (-40°C Results):

- Lessons learned improved leakage failures as well as X, Y, and Z thermal drift
- With 4 to 5 pass probe flows AVI loss is controlled to < 0.25%

Improved Temperature Capability

Project: Standardize to air cooled chiller systems for cold probe capability in EBT.

• 19 Air Cool Plus units installed and qualified

Impact

- Achieved 11% Ao improvement from baseline systems.
 - In house sealing of UF3000 probers allowed for cost avoidance of 5 additional cold probers
- MTBF > 42 K hrs: Article 1 has exceeded 40 K hrs of operation without fail
- Enabled -40°C to 200°C probe capability
- Reduced coolant costs by \$40K per year.
- 86% reduction in heat transfer fluids used to cool the probing chuck during low temperature product testing

Current Status :

- First article for UF3000 Air Cool option installed on Fusion platform
 - Enables 20°C to 200°C probe capability
 - Reduced chuck cooling times (4 hour wait time reduced to < <u>30 min</u>.)
- 9 UF200 air cool units implemented on VLCT and IFLEX platforms
 - Reduction in chuck cooling times (3 hour wait time reduced to < <u>12 min</u>.)

Cold Probe Test Cell Availabiltiy Across 19 Systems											
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Average Ao	<u>80.1</u>	<u>84.9</u>	<u>89.6</u>	<u>96.7</u>	<u>97.7</u>	<u>95.1</u>	<u>97.0</u>	<u>94.3</u>	<u>97.5</u>		
Goal	98	98	98	98	98	98	98	98	98		

Greenhouse Gas Reduction

June 8-11, 2014

Effects of -40°C at Test

-40°C Probe: Native to RASP Comparison

- The most recent -40°C probe passes have showed stable yield (> 80%) with no leakage failures
- Prober hardware modified to allow a top down CDA purge as well as minimize pin to pad drift

D. Fresquez, et al.

June 8-11, 2014

Summary of Findings

- Low temperature probe has provided a stronger correlation to our \mathbf{O} packaged flows for direct wafer sales and reduced overall test cost.
- The test team was able to demonstrate 30°C to 40°C 0 characterization and prove that parametrics moved predictably.
 - Implementation of cold probe at MP2 was proven to eliminate final test \bullet insertions without adding additional wafer level probe passes.
- The implementation of air cooled technology improved tool \bigcirc availability, reduced cost of ownership, and allowed for a reduction in Greenhouse gasses utilized.
- **Modifications of test cell hardware included:** \bigcirc
 - Sealed Probe Cards / Head Stages / Probe Chambers
 - Top down CDA purge
 - Implementation of specific head stage alloys to avoid AVI loss

Acknowledgements

- Alan Wegleitner
- Curtis Wegner
- Harald Ibele
- Mark Gillette
- Eddie McClanahan

- Haris Imamovic
- Abrar Mohammed
- Stephanie Kiley
- Vincent Ellis

