

IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

probing@hot temperature a new thermal approach to probing accuracy

Invented for life

Harald Berger Walter Seitz

Klemens Reitinger Robert Stoiber

Content

- Introduction
- Present Solutions
- Thermal Approach
- Measurement of Temperature and Displacement
- Concept of dynamic thermal shielding (DTS)
- Temperature Measurement w and w/o DTS
- Feedback of DTS to wafer
- Displacement Measurements w and w/o DTS
- DTS in production environment
- Outlook

• Summary

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

Introduction

- You cannot beat physics
- probing at high temperatures generates a very high amount of heat energy
- main problem is drift of X/Y/Z position
- Detailed explanation of these values and a model to explain these drifts are well known [Berger/Seitz, SWTW 2013]

Present Solutions

Methode	Action	Advantage	Disadvantage
Optical realignment	correcting the drift	very accurate; no investment	time consuming; thermal disbalance while realignment; no control between realignments
Pre soaking	accelerates reaching a balanced situation	no investment	time consuming;
Pre-heating of probecard and / or headplate	accelerates reaching a balanced situation	faster than just soaking; not only probecard effected	time consuming; static, non local solution; cost of invest
mathematical prediction	Contol of position by temperature sensors an math. methodes	Local, no time loss	uncertainty remains (no controlling, no monitoring)

Present Solutions

Methode	Action	Advantage	Disadvantage
Passive shielding	prevents heat soaking for a certain time	few investment	Static, non local; retarding but not solving
Cooling of probe card	prevent heat soaking of probecard	Instant effect, no time lost; high invest	Static, non local
"thermal design" of probecard	Fit the design to high temperature use	Intrinsic solution, no other countermeasures	compromise to other PC features; expensive materials; high invest

Measurement of Temperature and Displacement

time (min)

Process of Temperature

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014

IEEE Workshop

-100

Measurement of Temperature and Displacement

Process of Temperature

Measurement of Temperature and Displacement

Process of Displacement

Temperature Measurement w/o DTS

Temperature distribution on Probecard with +165°C Chuck at rear position

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014

Temperature Measurement w/o DTS

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014

IEEE Workshop

95.4°C

20.6°C

Chuck Position

Temperature Measurement w DTS

Temperature distribution on Probecard with +165°C Chuck at rear position

WTW

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014

Temperature Measurement w DTS

Temperature distribution on Probecard with +165°C Chuck center position (no delay)

H. Berger, W. Seitz, K. Reitinger, R. Stoiber

June 8-11, 2014

Feedback of dynamic thermal shielding (DTS) to wafer

 $T(chuck) = 175^{\circ}C$

H. Berger, W. Seitz, K. Reitinger, R. Stoiber June 8-11, 2014

IEEE Workshop

static

PC with DTS at 175°C Testing Temperature

Number of realignments necessary:

Dimension	Probecard w/o cool shield	Probecard w cool shield	· .
Х	23	3	
Y	14	6	
Z	34	4	
sum	71	13	

June 8-11, 2014

 Thermal stabilizing of ceramic head will result in further improvement

 Docking of probecard has to be simplified for production

Summary:

 Stable thermal equilibrium reached by cool shield

Accuracy improved by factors

 Especially fast changes of heat source can be completely compensated

 Effort for realignment can be reduced dramatically

