IEEE SW Test Workshop Semiconductor Wafer Test Workshop

June 8 - 11, 2014 | San Diego, California

Finite Element Modeling and Characterization of Cantilever Probe Tips Used in Wafer Test

Levi W. Hill^{1,2} Noelle L. Blaylock¹ Stevan Hunter PhD^{1,2} ¹Brigham Young University Idaho ²ON Semiconductor

This work supported by ON Semiconductor

Probing Experiment Factors

Input factors

- 3 probe cards (Standard force, Large tips, High force)
- 3 wafers (Pad Al thickness: 0.7um, 0.9um, 3.0um)
- No. of probe touchdowns (1 or 2)
 - Wafer stayed aligned between touches
- Chuck overdrive
 - 50um, 100um
- Probe mark measurements
 - Length of probe travel (scrub)
 - (Total Area) Scrub area + Prow area
 - Depth (Remaining Al thickness)

Probe Tip Characteristics per Card

	Probe Card 1	Probe Card 2	Probe Card 3
Tip Diameter	.8 mil	1.2 mil	0.8 mil
Force	standard	standard	high

Example probe tip surfaces after use

June 8-11, 2014

Probing Experiment (3 wafers)

Probe Marks: 1 Touch @ 2mils OD

Probe Marks: 2 Touch @ 2mils OD

Hill, Blaylock, Hunter

June 8-11, 2014

Probe Marks: 1 Touch @ 4mils OD

Hill, Blaylock, Hunter

June 8-11, 2014

Pad Al Remaining, Prow Height

Hill, Blaylock, Hunter

June 8-11, 2014

Coincident Touches, and Overdrive

Both Length and Area increase
 Both Length and Area increase
 Both Length and Area increase
 significantly with increased Overdrive

Hill, Blaylock, Hunter

June 8-11, 2014

Pad Al Thickness, and Probe Tip

Hill, Blaylock, Hunter

June 8-11, 2014

Finite Element Models of Probe Tips

- Student-created probe tip models are used to simulate the scrub motion of probing
- Experimental data above is used to check the validity of modeling
- Objective is to learn from modeling how to reduce probe mark size and probe longevity without causing pad or bondability issues
- Preliminary results follow:

Finite Element Model of Probe

Probe Model Used in These Simulations

Material properties of W are used for the probe

Probe tip has a slight relief on the heel so it will continue to make contact as it slides forward on the pad surface

Hill, Blaylock, Hunter

June 8-11, 2014

SWTW

Larger Tip Probe Model

Shortened tip length, as if the probe has been worn during use, with larger tip resulting

Hill, Blaylock, Hunter

June 8-11, 2014

Cantilever Probe Model

Probe Tip Models Under Stress

The bond pad's upwards movement strains the tip, with the shank as a spring

Hill, Blaylock, Hunter

Probe tips on Thin and Thick Pad Al

0.7um pad Al thickness

3.0um pad Al thickness

Hill, Blaylock, Hunter

June 8-11, 2014

High Force Probe Tip

Low Overdrive

High Overdrive

Hill, Blaylock, Hunter

June 8-11, 2014

Overdrive Effect: Measure, Model

Measured

Simulated

Overdrive is easiest to model and simulate
Slope matches, but need offset adjustment in model

Probe Tip Effect: Measure, Model

Measured

Simulated

 Model has small offset but matches slope for small and large tips

 Model is off for high force tip – insufficient force applied, compared to actual probes

Hill, Blaylock, Hunter

June 8-11, 2014

Pad Al Thk Effect: Measure, Model

Measured

Simulated

Insufficient interaction with the pad Al in the model, so the scrub length doesn't drop enough *Recommend more tip contact area in the model*

Other Probe Models (cont)

Summary

- Experiment to create various probe marks
 - 3 pad Al thicknesses
 - 3 different probe tip conditions
 - 2 different overdrives
 - 1 and 2 touches
- Created FEM models of various probe tips
- Ran simulations to attempt matching with experiment data
- Lots more work to do...

Hill, Blaylock, Hunter

