

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Challenges probing next generation full array products with 60 µm pitch and below

Presenter:

Co-authors:

Raffaele Vallauri – Technoprobe

Erik Jan Marinissen – IMEC Jerry Broz – ITS

Overview

- Background
- Next generation device trend and requirements
 - Probe card and probing challenges
- Technoprobe probing solutions at 60 μm pitch and below
 - Technology evolution a few case studies: μ-Cu pillars
 - On-going tests at IMEC on WIDE I/O2 down to 40 μm pitch
- On-line cleaning process optimization
 - On-line cleaning sheet mechanical benchmark with ITS
- Space transformer challenges and roadmap
- Conclusions and future work

Background

- Over the last 3-4 years, the requirements of probing dense arrays of bumps have been more and more demanding
- To address our customers needs we have been developing new approaches in probing and space transformer technologies (presented at SWTW 2013-14) introducing:
 - TPEG[™] MEMS T3, to overcome all limitations of previous Cobra-like technologies (SWTW 2013)
 - − TPEGTM MEMS T1, to allow probe on μ -Cu pillar bumps (SWTW 2014)
- Furthermore, understanding the overall industry needs is a critical step to translate our customers' next generation challenges in probe cards evolution

R. Vallauri

Next generation device trend and requirements Systems scaling as a new frontier

• Last 50 Years

- Transistor scaling with minimum focus on system miniaturization

Next 50 Years

- System scaling in conjunction with Transistor scaling
- System scaling for Mobile devices

Next generation devices trends and requirements Probe card challenges

• SoC device technoloy for flip chip micro bump testing is moving from 150 μ m pitch down to 80 – 60 μ m and 40 μ m in the next future

Pitch reduction trends

- Mobile processors \rightarrow 80 um
- − HBM \rightarrow 50 um
- Wide I/O \rightarrow 40 um
- Mixed pitch & current

• Electrical yield

- C_RES stability
- Functional tests : low probe R required
- Current capability: low resistivity materials needed
 - High speed tests: special probes and layout must be designed
- PH technology scalability is key as well as the development of advanced space transformers

 Probes and PH design must be tailored to Customer applications: specific PH mechanics, advanced probe alloys, special probe designs must be developed

June 7-10, 2015

Probe card concept evolution From simple interface to system level approach

Probe card concept evolution Cu pillars and µCu pillars probing developments

- A few case studies are presented to give an overview of how important is to adopt a system level approach:
 - probe alloy, probe design, PH mechanics, probing setup and customer product peculiarities must be considered since the beginning

• Case studies:

 CASE 1: TPEG[™] MEMS T60 developed for next generation microprocessors at 60 μm pitch (25 μm Ø μCu pillar bumps). Results on Customer test wafers.

 CASE 2: Vertical FT1 developed for 40 μm pitch μbump direct probing. Joint tests with IMEC and TEL.

Case 1: Direct μ-bumps probing @ 60 μm pitch Customer requirements – TP probing solution

- Target: define and qualify a robust probing technology to test next generation microprocessors
 - Min pitch : $60 \, \mu m$
 - $-\mu$ Cu pillars with solder cap: 25 μ m diameter
 - Maximum bump damage less than 30% of the area
 - Stable C_RES

• TP solution: low force TPEG[™] MEMS T60

- Next slides are showing the results of TP investigation on test wafers comparing the scrub area and C_RES performances depending on probe force, PH mechanics and on probe alloy
- First step: probe force and PH mechanics optimization to match bump damage requirements even in the worst case (max OD – 6 consecutive TDs)
- Second step: probe alloy and probe tip design & shape optimization to get stable C_RES

Case 1: T60 for μ-bumps direct probing Probe force and mechanics optimization

- Force & Alignment must be controlled to have reduced pillar cap damage
 - Probe force and probe mechanics optimization using as reference TPEG[™] MEMS T1 today already in mass production @ 80 µm pitch

ANNIVERSARY

June 7-10, 2015

Case 1: T60 for μ-bumps direct probing C_RES tests setup

- C_RES TESTS SETUP on Customer TV wfs
 - A few C_RES pairs available (in short @ wafer top metal level)

Measurement principle: Force V – Measure I

June 7-10, 2015

- Force V = 10 mV
- Clamp I = 50 mA
- R Pair = $0.5 \times (V/I)$

Case 1: T60 for μ-bumps direct probing Probes fine tuning for optimal C_RES stability

- TPEG[™] MEMS T60 probes and probe head mechanics have been specifically fine tuned to guarantee stable C_RES even with reduced probing force
 - A new probe alloy has been specifically developed (Alloy C)
 - Below box plot is showing the results obtained, with respect to TPEG[™] MEMS T1 that is today in mass production down to 80 µm pitch

Case 2: 40 µm pitch direct µbump probing IMEC – Technoprobe - TEL

Imec's Blanket Micro-Bump (BMB) Design

- Includes JEDEC WIO2 foot-print (40 μm pitch)
- Micro-bumps: arnothing 25 μ m Cu and arnothing 15 μ m Cu/Ni/Sn

Technoprobe's Probe Technology

- FT1.0 vertical needles, micro-wired space transformer
- Probe card with single-bank WIO2

• Test Equipment @ imec

- TEL P-12XLm automatic probe station
- Agilent 4073 parametric tester

• Evaluation Criteria

- Contact resistance (C_RES)
- Probe marks

Case 2: 40 µm pitch direct µbump probing Blanket Micro-Bump Wafers

- Ø 25µm Cu
- (10nm NiB coating)

• Ø 15μm Cu/Ni/Sn

June 7-10, 2015 2 0 1 5

Case 2: 40 µm pitch direct µbump probing **Initial results with pointed tips**

- Preliminary C_RES results with pointed tips are summarized here below.
- Pointed Tips, OT=75µm Mean C_RES
 - Overall: 30.97Ω
 - Zero dummy rings : 28.49Ω
 - One dummy ring : 31.04 Ω
 - Two dummy rings : 33.38 Ω
- Pointed Tips, OT=85µm Mean C RES
 - Overall: 27.69 Ω
 - Zero dummy rings
 - One dummy ring
 - Two dummy rings
- : 28.69 Ω

: 26.19 Ω

: 28.18 Ω

25TH ANNIVERSARY June 7-10, 2015

Case 2: 40 µm pitch direct µbump probing Initial results with flat tips

First results with flat tips are reported below

50 Reistance [Ohm] D03: Cu 0 1189 1405 865 919 973 1027 1081 1135 1243 1297 1351 1459 1513 1567 1621 1675 Touch-Down Number

004: Cu/Ni/Sn 7.5 Ē 7.0 <u>ة 6.5</u> 9 6.0 si 5.5 3.5 1729 2053 2107 2161 2215 2269 2323 2377 2431 2/185 Touch-Down Number

June 7-10, 2015

D02: Cu+NiB

- C_{RES} remains in range 4-50 Ω
- Mean* *C_RES* = 28.39 Ω
- Cu even harder to probe due to NiB

D03: Cu C_RES remains in range 4-50 Ω Mean* C_RES = 17.20 Ω

D04: Cu/Ni/Sn

- C_RES remains largely in range 4-6 Ω
- Mean* C_RES = 4.44Ω
 - Sn is a lot easier to probe than Cu

R. Vallauri

On-line cleaning optimization with ITS Target and test methodology adopted

- A typical example of strong partnership with a key Supplier of our Customers is reported
- Case study: on-line cleaning wear-out optimization in cooperation with International Test Solutions is reported (ITS – Jerry Broz)
 - Target: reduce on-line cleaning wear out rate for both TPEG™ MEMS T3 and T1 used in probing high volumes Cu pillars and μ-bumps
 - Test methodology: benchmarking

On-line cleaning optimization with ITS Benchmark description

• Benchmark is based on:

- Confocal imaging (50x, \sim 0.5 mm x 0.5 mm area) : see below
- Tip consumption (wear rate) and tip finishing : see next slides

On-line cleaning optimization with ITS Summary of wear out data

- No major tip surface finishing differences have been detected
- With respect to 3M 3µm, ITS PL cleaning media show lower wear rates: PL 1SH is the most promising one

Technology	Cleaning media	Cleaning movement	Wear-out rate
TPEG™ MEMS T1	3M-3µm	X-Y	Ref.
	PL 1AH	X-Y	- 10 %
	PL 1SH	X-Y	- 20 %
	PL 3SH	X-Y	0 %

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

On-line cleaning optimization with ITS Tip finishing

Technology	Cleaning media	Tip image	Tip Ra [μm]
TPEG™ MEMS T1	3M-3µm		~ 500 nm
	PL 1AH	Contraction of the second seco	~ 490 nm
	PL 1SH		~ 400 nm
	PL 3SH		~ 510 nm
R. Vallauri June	25TH ANNIVERSAL	^a SW Test Workshop	19

2 0 1 5

Space transformer Challenges below 80 µm pitch

• We are now facing a new paradigm: probe card scalability is not limited by probes but more and more by space transformer availability

- Below 80 µm pitch only few MLO and/or MLC suppliers are providing working solutions with increasing costs and delivery times
- Next slide is summarizing today Technoprobe capability and roadmap down to 40 μm pitch

Space transformer Challenges below 60 µm pitch

 Technoprobe developed a dedicated supply chain for MLO/MLC interconnections, in order to cover the broadest range possible of required probe depths and layout/pitch configurations

Standard solution: Wired and µ-wired ST (40um pitch min)	Micro organic interposer (60um pitch)	In qualification phase Availability eJune'15
25TH ANNI	VERSARY	
ROADMAP	U-fine pitch MLC (50um pitch)	Available
	Micro Interposer (40um pitch)	In qualification phase Availability eJune'15

Space transformer Solutions available @ TP

ST technology	Image/sketch	Min pitch	Status	Characteristics
Micro Organic Interposer		50 µm	eJune'15	Build up: 3(5) layers L/S 6/6 μm Core: 2 layers vias pitch 110 μm
U-fine pitch MLC		60 µm	Available	Build up: 4 layers L/S 10/10 μm Core: 2 layers vias pitch 110 μm
Silicon Interposer		40 µm	eJune'15	TSV diameter 10um TSV pitch 40um L/S 5/5um
R. Vallauri	June 7-10, 201	5 25TH ANNIVERSAR	SW Test Work	shop

2 0 1 5

22

Space transformer Micro-Interposer solution

 When probing at 40 µm pitch is concerned, only microinterposer solution can be used.

- Full probe card assembled and tested successfully @ $t_{\rm 0}$

- TSV diameter 10um
- TSV pitch 40um
- Trace width/gap 5/5um

50 by 50 mm² Interposers successfully soldered and tested on test PCBs:

- -10 um co-planarity achieved
- Fully electrical functionality achieved

June 7-10, 2015

Conclusions

• We are in front of a two fold, huge change of probe card paradigms:

- Probe cards moved from just an electro-mechanical interface to a system, to be integrated in a high complexity probing environment
- More recently probe card scalability is moving from probes/probe head limitations to space transformer availability limitations
- Win/win strong partnerships are needed between main Suppliers and Customers to have full visibility of evolving requirements and full control of the design and manufacturing of most critical probe card components.

• The presentation gave you a quick overview of how Technoprobe is working to achieve this target

R. Vallauri

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Future work On-going developments down to 40 µm pitch

- Further developments are on-going to define the best possible probing solution to probe over μ-pads and μ-Cu pillars down to 40 μm pitch full array
- TPEG[™] MEMS T40, recently introduced, will be tested within the cooperation frame between IMEC, Technoprobe and TEL

Thank you !

Raffaele Vallauri R&D & Process Engineering Technoprobe Italy (+39) 0399992557 raffaele.vallauri@technoprobe.com

Marco Prea Marketing Mgr Technoprobe Italy (+39) 0399992521 marco.prea@technoprobe.com

Emanuele Bertarelli R&D Technoprobe Italy (+39) 0399992593 emanuele.bertarelli@technoprobe.com Erik-Jan Marinissen Principal Scientist 3D integration – Test & DFT IMEC Belgium (+32) 16 28-8755 erik.jan.marinissen@imec.be

Jerry Broz Applications Engineering Team Leader International Test Solutions USA (+001) 303-885-17 jerryb@inttest.net

Daniele Perego R&D Engineer Technoprobe Italy (+39) 0399992548 daniele.perego@technoprobe.com