

## SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

#### **Smart sensors - Smart Probe Cards** Probing sensor devices requires stimulation with magnetic fields, infrared radiation or humidity



**Dr. Rainer Gaggl, Georg Franz** T.I.P.S. Messtechnik GmbH

## **Overview**

- Wafer level sensor test
- Concept of smart probe cards
- How to stimulate sensors (IR, humidity, magnetic)
- Principal approaches
- Choosing a technology
- Design examples and performance data
- Summary: Considerations for the test engineer

## **Smart sensors**

#### **Application examples**

 Automotive: magnetic angle sensor



picture source: austriamicrosystems

 Automotive: contactless temperature sensor



picture source: Melexis

 Industrial Automation: humidity sensor



picture source: IST-AG.com

## Sensor test

#### Wafer level test

- electric and sensor test
- standard probing
- additional sensor excitation
- fast multi-site capability



## Smart probe cards

#### Requirements

- Standard Testing Platform
- Automatic Probe Card Changer
- Dockable Interface for sensor excitation
- Volume Production
- Alignment / Maintenance friendliness

## Smart probe cards

#### **Modular design**

- Sensor excitation module
- Detachable from probe card
- One excitation module, multiple probe cards
- Module supply through probe card contacts



Rotating Magnet Probe Card

IR Radiation Probe Card

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

## Smart probe cards

#### Smart module

- integrated microcontroller
- digital interface: set point, status
- keeps set point on test interruption: temperature, position, ...
- precise closed-loop control



## **Sensor excitation**

#### **Temperature Sensors**

- thermal radiation
- signal ~ absorbed radiation





## **Infrared radiation**

#### **Physics**

- surface emission
- surface temperature: T
- surface emissivity: ε
- radiance ~  $\varepsilon \cdot T^4$

# Black body radiation intensity

Wavelength [µm]

#### Sensor

- temperature sensing range: ambient to 100°C
- peak radiance: ~  $10\mu m$  wavelength



## **IR Radiation Sources**

#### **Black Body**

- emissivity 100%
- no reflection
- larger body size
- slower response

June 7-10, 2015

#### **Hot Plate**

- emissivity 90%
- reflection 10%
- smaller body size
- faster response

SW Test Workshop

emissivity uncertainty





## **IR Probe Card**

#### "Hot plate" design:

- large view angle of sensor
- large radiator
- close distance
- placement inside spider



Needle spider with IR radiator installed

radiating area (black surface)

sensitive area

chip area

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop



## **IR Probe Card**

#### **Characteristics**

- View factor >90% possible
- Temperature Range: ambient+10°C to 80°C
- Temperature Accuracy: ± 1°C





## **IR Probe Card**

#### Performance

- Temperature Stability: ± 0.1°C
- Temperature Uniformity: ± 0.2°C
- Stabilizing time: 5 minutes (40°C step)

June 7-10, 2015



SW Test Workshop

13

## **Sensor excitation**

#### **Humidity Sensors**

- capacitance ~ relative humidity (% r.h)
- 100% = saturated air
- strong temperature dependance



## HUM

## **Humidity Testing**

#### **Closed System**

- prober inside chamber
- controlled atmosphere
- high accuracy
- slow

#### **Open System**

- standard prober
- humidity generator
- continous flow

fast

• mix dry + wet air



## **Humidity Probe Card**

#### **Characteristics**

HUM

- small mixing chamber
- closed-loop humidity control
- fast change of humidity possible



## Humidity Probe Card

#### **Characteristics**

HUM

- Humidity range:
- Temperature range: +5 to +80°C
- Flow rate:

< 0.5 lit<u>er/min</u>

2 to 98%r.h.



## **Humidity Probe Card**

#### Performance

HUM

- Humidity Accuracy:
- Humidity Stability:
- Temperature Accuracy: ± 1°C
- Stabilizing time:
- Stability / Drift:



- ± 1% r.h.
- 10 sec. (10% r.h. step)
- < 1% r.h./year (calibration poss.)



Accuracy of integrated sensor for humidity control depends on temperature

## **Sensor excitation**

#### **Magnetic Sensors**

magnetic flux parallel wafer

signal ~ flux density and direction





#### 2 Dipoles

- coil and yoke
- symmetry arrangement
- field lines straight on symmetry

#### **2N-Pole**

- Superposition of above
- Field by vector sum
- Direction by coil currents



#### Field homogeneity:

- strength and direction non-uniform
- can be measured and compensated
- additional calibration device needed



D.U.T.

|   | 26     |  |
|---|--------|--|
| - | 25,667 |  |
| - | 25,333 |  |
| - | 25     |  |
| _ | 24,667 |  |
| _ | 24,333 |  |
|   | 24     |  |
| - | 23,667 |  |
| - | 23,333 |  |
|   | 23     |  |

Flux density [mT]





#### **Material Nonlinearities:**

- Soft magnetic core saturates
- Small but visible hysteresis

#### **Reference sensors:**

- reference sensors (R) fixed to yoke
- calibration (C) with precision probe
- correction of DUT data





#### **Performance:**

- DUT size: 3x3mm
- field strength: 25mT
- angular accuracy: ±1°
- repeatability: ± 1°
- rotational speed of field vector max. 10 Hz



## **Permanent Magnet**

#### **Characteristics**

- DUT size : 10x10mm
- field strength: 150 mT
- good field homogeneity
- large field for multi-site testing
- constant over time
- once-only calibration for large multi-site or high angular precision



![](_page_23_Figure_10.jpeg)

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

![](_page_24_Picture_0.jpeg)

## **Permanent Magnet**

#### Performance

- positioning time 45°: 200 ms
- continouos rotation: 150 rpm

± 0.1°

- positioning accuracy: ± 0.1°
- repeatability:
- positioning modes:
  5 and 45° increments, single rotation, continouos rotation

![](_page_24_Picture_8.jpeg)

![](_page_25_Figure_0.jpeg)

## Comparison

#### **Permanent Magnet**

- precise angular position
- + always constant strength
- + always constant offset (multi-site)
- + no heat dissipation
- slower stepping

#### Electromagnet

- + fast change of magnetic angle
- + adjustable strength
- coil heating / cooling requirement
  - reference sensors / correction
- speed limit: 10 Hz
- low accuracy

## **Summary**

Smart probe cards help to achieve higher accuracies by precision controlled sensor excitation. They can also reduce test complexity and effort.

Still wafer probing of sensor devices is a challenge:

- In some physical domains it remains difficult to reach the required accuracy of sensor excitation.
- Test engineers must consider effort for calibration of test equipment in a production environment.
- In addition to probe cards calibration tools must be purchased.

## Acknowledgements

- D. Deegan, ex ANALOG DEVICES Limerick
- J.P. Whelan, ANALOG DEVICES Limerick
- E.D. Sandulescu, INFINEON Bucharest
- our staff at T.I.P.S. Messtechnik

# THANK YOU FOR YOUR ATTENTION!