

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Probe Tip and Probe Mark Analysis to Predict Effects on Wire Bonding

Austin Doutre Kyle Syndergaard Stevan Hunter

Objective

 Investigate cantilever probe marks and their potential impact on wire bonding

Designed Experiment Setup

Cantilever Probe Factors

- Probe Contact Force
- Probe Tip Diameter
- Probe Tip Surface Texture

• Wafer Factors

– Wafer Pad Al Thickness

Austin Doutre

Probe Contact Force

Regular – 3 grams force

High – 6 grams force

Austin Doutre

Probe Tip Surface Texture

Smooth

– 3 μm grain

Rough – 9 μm grain

Austin Doutre

Designed Experiment Factors

• Probe Card 1 (LG-Lo) Large Diameter (30 μm) Low Force (3 grams) Probe Card 2 (SM-Hi) – Small Diameter (22 μm) – High Force (6 grams) Probe Card 3 (SM-Lo) – Small Diameter (20 μm) Low Force (3 grams)

• Wafers A & C

– 3 μm pad Al thickness

• Wafer B

– 0.8 μm pad Al thickness

Wafer Probe Diagram

Austin Doutre

June 7-10, 2015 2-0-1-5 SW Test Workshop

Probe Mark Area Analysis

*Optical images taken with Bruker Contour GT-K1 and processed using Vision 64 Software

Austin Doutre

Probe Mark Depth Analysis

Austin Doutre

Probe Mark Scrub Length

Thick Pad Al: Scrub Length increases as both Tip Diameter and Force increase

<u>Thin Pad Al</u>: Scrub Length increases as Force increases

As Tip Texture becomes Rough, larger Tip Diameter increases Length, while higher Force decreases Length

Wafer B (0.8 µm)

Austin Doutre

Finite Element Model of Cantilever Probe and Pad Al

Austin Doutre

Comparison of Scrub Length FEA

Probe Mark Scrub Width

Thick Pad Al: Scrub Width increases as both Force and Tip Diameter increase

<u>Thin Pad Al</u>: Scrub Width increases as both Tip Diameter and Force increase

Scrub Width decreases with higher Force as Tip Texture becomes Rough

Wafer A (3 µm)

Wafer B (0.8 µm)

Austin Doutre

Prow Diameter

Thick Pad Al: Prow Diameter increases as both Force and Tip Diameter increase

<u>Thin Pad Al</u>: Prow Diameter increases as both Tip Diameter and Force increase

Prow Diameter

Prow Diameter decreases with higher Force as Tip Texture becomes Rough

Wafer A (3 µm)

Wafer B (0.8 µm)

Austin Doutre

Prow Area

Thick Pad Al: Prow Area increases with higher Force and decreases with larger Tip Diameter

Thin Pad Al: Prow Area increases as both Tip Diameter and Force increase

Prow Area generally decreases as Tip Texture becomes Rough

Wafer A (3 µm)

Wafer B (0.8 µm)

Austin Doutre

Scrub Area

Thick Pad Al: Scrub Area increases as both Tip Diameter and Force increase

Thin Pad Al: Scrub Area increases as both Force and Tip Diameter increase

Scrub Area generally decreases as Tip Texture becomes Rough

700

650·

600

550·

500

450·

400

350

Scrub Area

Wafer B (0.8 μm)

Austin Doutre

Total Area

<u>Thick Pad Al</u>: Total Area increases as both Tip Diameter and Force increase

Thin Pad Al: Total Area increases as both Force and Tip Diameter increase

Total Area generally decreases as Tip Texture becomes Rough

Wafer B (0.8 μm)

Austin Doutre

June 7-10, 2015

Prow Height

Both Thick and Thin Pad Al: Prow Height increases with higher Force and decreases with larger Tip Diameter

Overall effects on Prow Height decrease as Tip Texture becomes Rough

Wafer A (3 µm)

Wafer B (0.8 μm)

Austin Doutre

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

18

Overall Mark Depth

Thick Pad Al: Overall Mark Depth increases with higher Force

<u>Thin Pad Al</u>: Overall Mark Depth increases with larger Tip Diameter

Overall Mark Depth increases as Tip Texture becomes Rough

Wafer A (3 µm)

Wafer B (0.8 µm)

Austin Doutre

SM-Lo

Scrub Tail Depth

Thick Pad Al: Scrub Tail Depth increases with higher Force and larger Tip Diameter

<u>Thin Pad Al</u>: Scrub Tail Depth affected very little by either Force or Tip Diameter

Scrub Tail Depth increases as Tip Texture becomes Rough

Wafer B (0.8 μm)

Austin Doutre

2 0 1 5 SW Test Workshop

Scrub End Depth

Both Thick and Thin Pad Al: Scrub End Depth decreases with larger Tip Diameter and increases with higher Force

No apparent effect from Tip Texture

Wafer B (0.8 μm)

Austin Doutre

June 7-10, 2015 2 0 1 5

Delta Height

Thick Pad Al: Delta Height increases with higher Force and decreases with larger Tip Diameter

Thin Pad Al: Delta **Height increases** with higher Force and decreases with larger Tip Diameter

Overall effects on Delta Height decrease with Rough **Tip Texture**

Wafer B (0.8 µm)

Austin Doutre

25TH ANNIVERSARY SW Test Workshop

Tail Type Classification

• Flat

Tail Type Frequency by Card and Wafer

Flat Round Taper Thin

Taper

Round Tail Type appears most often in Thin Pad Al or with Large **Probe Tip Diameter**

Austin Doutre

25TH ANNIVERSARY June 7-10, 2015 SW Test Workshop

Round Tail Probe Mark Comparison

Experimental Results of Small Dia. Low Force Probe Mark on 0.8 µm Pad Al

FEA Results from Equivalent Probe Setup after 0.5 mil OT

Austin Doutre

Taper Tail Probe Mark Comparison

Experimental Results of Small Dia. High Force Probe Mark on 3 µm Pad Al

FEA Results from Equivalent Probe Setup after 0.5 mil OT

Austin Doutre

Conclusions for Probe Mark Results

- Thin Pad Al reduced all results except Scrub Length
- Rough Tip Texture reduced all results except Overall Depth and Scrub Tail Depth
- Main Effects on Thick Pad Al
 - Higher Force increases Width, Prow Diameter, Prow Area, Prow Height, Overall Depth, Scrub Tail Depth, and Delta Height
 - Larger Diameter increases Length, Scrub Area, Total Area, and Scrub End Depth

Main Effects on Thin Pad Al

- Higher Force increases Length, Scrub Area, Prow Area, Total Area and Delta Height
- Larger Diameter increases Width, Prow Diameter, Prow Area, Overall Depth, Scrub Tail Depth and Scrub End Depth

Apply Results to Wire Bonding

Minimize Prow Height

- Thin Pad Al, Low Force, Large Diameter, and Smooth Probe Tip Texture
- Minimize Mark Area
 - Thin Pad Al, Low Force, Small Diameter, and Rough Probe Tip Texture

Minimize Scrub End Depth

 Thin Pad Al, Low Force, Large Diameter, and Either Probe Tip Texture

Further Study

- Eliminate Experimental Noise (Streamlined Probing)
- Factor in Probe Tip Length
- Copper Wire Bonding Over Marks
- Implement Dynamic FEA Modeling