

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Measuring Electrical Probe Parameters Through a PCB

Gert Hohenwarter GateWave Northern, Inc.

Objective

- Examine reasons for measuring probe parameters through PCB
- Describe method for determining probe capacitance and inductance through a PCB
- Present results of different methods
- Explore accuracy 2 = 0 = 1 = 5

Approach

- Perform successive measurements of unpopulated vs. populated probe card
- Use 40 GHz vector network analyzer with time domain option, supplemented with SPICE simulations
- Extract L and C parameters from measurements
- Compare with model results (ANSYS HFSS 3D field modeler)

Potential reasons for thru-card measurements

- Inclusion of specific return path locations (ground)
- Desire to characterize contributions of a space transformer or other interface
- Evaluation of optimizations
- Card is already assembled
- 'Bucket of probes' without a suitable 'holder' for individual measurements
- Probes can not be readily individually characterized, e.g. MEMS

One motivation for thru-card measurements: Different signal/ground/power configurations in a BGA

1mm long probes: 505 pH

1mm long probes: 326 pH

Loop inductances for short and long probes 1mm long probes: 221 pH

Inductance as a function ground configuration in a linear array

L depends significantly on configuration - does not scale with pitch

June 7-10, 2015 2-0-1-5 SW Test Workshop

Probe card/interposer/space transformer signal path to be measured

Measurement sequence

Open or short on PCB/ST measure phase at PCB

....then open or short on PCB/ST plus probes

....and measure phase again at PCB

June 7-10, 2015

Phase ϕ for open circuited probes

Measurement thru PCB as a function of frequency results in large variations of phase. Is this really a viable option ?

Why frequency dependent measurements ?

- Ferromagnetic materials, e.g. Ni
- Advanced composites with nanoparticles
- MEMS on doped Si with multi-layer structures
- 'Engineered' materials with frequency dependent properties
- Path dependent performance variations

Examine ϕ **at lower frequencies**

Phase ϕ and capacitance as a function of frequency Difference vs. direct measurement of probes only

Inductance

Inductance as a function of frequency Difference vs. direct measurement of probes only

Basic thru-card measurements

- Simple calibration open/short with/without probes yields approximate results only at low frequencies
- Potentially significant error terms appear at normal operating frequencies
- Some form of improved calibration (or evaluation of data) is needed

TDR for open circuited probes

Time frame of interest Measured through PCB

June 7-10, 2015 2-0-1-5 SW Test Workshop

Phase ϕ for open circuited probes

Measured through PCB vs. direct measurement, gated and ungated

Capacitance as a function of frequency

TDR for short circuited probes

Time frame of interest Measured thru PCB

Phase ϕ for short circuited probes

June 7-10, 2015

25TH ANNIVERSARY 2 0 1 5

SW Test Workshop

Inductance as a function of frequency

L (f)

Error terms - C as a function of frequency for different gate widths

Gate width has a significant impact on accuracy (measurements taken on a different sample than previous results)

June 7-10, 2015 2-0-1-5 SW Test Workshop

Capacitance as a function of gate width

Evaluation of C at low frequencies and different gate widths reveals region of relative 'stability' of results

June 7-10, 2015 2-0-1-5 SW Test Workshop

Gated thru-card measurements

- Calibration open/short with/without probes plus time-gating yields results up to moderate frequencies
- Error terms for different gate widths, time positions and rise times must be carefully considered

Application of technique to crosstalk: Time domain crosstalk for adjacent probes

Time domain measurement of crosstalk is not necessarily very helpful in mutual inductance and capacitance determination

Crosstalk for open circuited probes

From calibrated open/short circuited measurement it becomes possible to develop a model for mutual L, C parameters

Mutual parameters

Site	Cm		Μ	
ungated	0.281	рF	0.597	nH
gated	0.217	рF	0.453	nH
modeled	0.211	рF	0.439	nH

The gated measurements yield an almost unrealistically accurate estimate for the mutual parameters in this case

Conclusion

- Thru-card measurements are possible
- Measurements through probe card without the use of 'suitable range restrictions' delivers inaccurate results
- Gating can provide results that closely match actual conditions
- Gates have to be applied cautiously and results verified via sensitivity analyis