

SW Test Workshop

Semiconductor Wafer Test Workshop

June 7 - 10, 2015 | San Diego, California

High performance HBM Known Good Stack Testing

Marc Loranger

FormFactor

John Oonk

Teradyne

Overview

- High Bandwidth Memory (HBM) Market and Technology
- Probing challenges
- Probe solution
- Power distribution challenges
- PDN design
- Simulation and measurement of final PDN design
- At speed test signal Integrity
- Summary

Market requirement

- Increase data bandwidth well above current GDDR5 technology
- Decrease power per GB/s of bandwidth
- Smaller size
 - Improve power distribution
 - Signal transmission

Long term roadmaps

 Expand into server applications and high performance computing when reliability is proven

- Next generation DRAM memory architecture
 - Four independent channel stack
 - Very wide data bus
 - 128 bits per channel
 - 512 bits total
 - Data bandwidth
 - HBM is up to 128GB/s per stack
 - GDDR5 is 32GB/s per chip
 - Device interface specified by JEDEC

- Stacked Memory on SoC Architecture
 - 4 to 8 die stacked on an SoC device
 - TSVs are typically employed to stack the memories
 - HBM stack then mounted on a 2.5D interposer with a processing element 1st key application is graphics

- Micro Bump interface defined by JEDEC
 - A field of 3982 Micro Bumps
 - Micro bumps have a pitch of 27.5 x 48 staggered
 - Some micro bump locations are depopulated to

permit test pads

HBM Stack Probing

 Bottom of SoC device in the stack provides test pads in the field of Micro bumps

Probing challenges

Challenges:

- Probe without damagingMicro Bumps
 - No issue with FormFactor MicroSpring®

UltraFLEX KGS Solution

Test cell configuration:

- 36-slot UltraFLEX platform
- 24 HPM 2.8Gbps digital instruments (3,480 IO pins)
- 10 UVS256 device power instruments (2,560 VS pins)
- New high-performance direct cable probe interface –
 no PIB or probe tower in the signal delivery path
- Probe card based on proven Magnum 2x "P52"
 - Mechanical standard already familiar to Form Factor
 - Digital and power pin assignments unique to UltraFLEX ATE

UltraFLEX KGS Enabling Capabilities

Digital

- Instrument delivers very fast signal rise times (<60ps)
- Peaking options to compensate skin losses in path
- In combination with probe card, full 2.8Gbps data rate at the die can be achieved

Device Power

- Programmable bandwidth to optimize response time of the supply and stability
- Solves excessive droop issue seen on other ATE

Power Distribution Challenges

- Very high current on core supply
 - >4A per stack
 - Single power plane in the SoC device
- Multiple power levels required
- Power probe count may be limited
 - ~30 in the subject design
- Up to X96 parallelism
 - Large number of independent DUT power supplies
 - Power net routing on the PCBA and in the DUTlet

PDN Spring Layout

- Single VDD1 power plane on the DUT
- 3 power planes from the tester
 - Each ATE power plane is 2 DUT power supplies ganged to act as a single supply
 - Each ganged supply set has one sense connected at the DUT
- To equalize current from each ATE supply springs are interleaved
 - The 3 ganged power sources combine for a total of 4.2A on the DUT

PDN DUTlet Power Stack-up

- The sequence of 3 springs Power plane 1, 2 and 3, rotates around the DUT
- DC Current carrying per spring with no spring damage at 85C is 500mA (1.4A capability per ATE power plane, 4.2A per DUT)

PDN Performance Results

- Two approaches were used to evaluate PDN performance
 - Physical design data was extracted into an S-Parameter files using Cadence Sigrity SI tool
 - Actual measurements were done with a dual port VNA at the DUTlet on the full probe card
 - Results were simulated in the frequency domain using Agilent ADS simulator
- To address the concern about power sharing due to imbalance between the ATE power planes a 1 mOhm resistance was simulated to evaluate this impact

PDN simulations vs. Measurements

- Difference between extraction and VNA measurements is related to VNA measurements were done on decoupling capacitors as probe points
- Performance in the 10MHz to 100Mhz range correlates reasonably well

PDN time domain simulation

- Dual Port VNA measurements Port 1 on Tester LGA and Port 2 on decoupling cap
- VNA S parameter files were modified to include DC-component with 0.1 ohm of path resistance

PDN voltage drop across DUT

- Dual Port VNA measurements Port 1 on Tester LGA and Port 2 on decoupling cap
- VNA S parameter files were modified to include DC-component with 0.1 ohm of path resistance

Known Good Stack At Speed Test

- Functional test rate is nominally 500MHz / 1Gb/s
- Test modes and/or margin testing may demand higher test rates
- Test cell
 - FormFactor SM100 HFTAP with 1GHz capability
 - Teradyne UltraFLEX KGD with high speed memory instruments
 - Up to 96 sites can be tested in parallel at speed

HPI – High Performance Interface Smart Matrix 100 HFTAP K10

Known Good Stack At Speed Test

 FormFactor's Smart Matrix 100 HFTAP K10 and Teradyne's UltraFLEX KGD technology together deliver full Data Rate testing capability at wafer probe for Known Good Stack

Summary

- FormFactor's Smart Matrix 100 HFTAP K10 and Teradyne's UltraFLEX KGD technology together deliver full testing capability at wafer probe for Known Good Stack
- Power distribution concept has proven to be effective and does not show probe damage due to current imbalance
- Full at speed test has also been proven