

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

An probing evaluation of Cu-Pillar by using wire type Probe Card

Chang-Hoon, Hyun Samsung Electronics

Contents

- Probe Card cost of Cu-Pillar probing
- Cases introduction of Cu-Pillar probing
 - Temperature & Pad structure
- An experience of Cu-Pillar probing by wire type
- Process change for cost reduction
- SEC Requirement of Cu-Pillar Flip-Chip Probing
- Probe Card long life (MEMS Vertical)
- Summary

Probe Card cost for Cu-P probing

X Cu-Pillar = Cu-P

***** The using of Cu-P is increasing in the DTV controller & lower MoDAP chips \rightarrow P/C cost is very important for higher margin of revenue

C.H Hyun

Test case of Cu-P probing

A. Cu-P Structure Introduction

TCFC : Thermal Compression Flip Chip

Source : DIPSOL Website Figure http://www.dipsol-jp.com/wp-content/uploads/ bump_reflow_sem200.png

CuBOL : Copper-column Bond on Lead

Source : Hamid Eslampour(STATSChipPAC) "Low Cost Cu Colimn fcPOP Technology " IEEE, EMTC, 2012

- The diameter limit of CuBol type is 40~45um \rightarrow 100um under pitch will be used TCFC
- Cu-P is expected to grow at CAGR(2014~2018) of 10~15% (SEC Case)
 - 2014 ~ 2015 : 28nm Controller/Modem (Room Temp) & MoDAP (Hot Temp)
 - 2016 ~ 2018 : 10~14nm Premium AP & 28nm Product(~beyond)
 - Mobile Phone Price drop down \rightarrow Improve PKG Cost \rightarrow Applying of Cu-P will expand

C.H Hyun

June 7-10, 2015 25^{TH ANNIVERSARY} SW Test Workshop

Test case of Cu-P probing

B. Cu-P Products Table

Room : 77°F, Hot : 185°F

Туре	Diameter (um)	Temperature (°F)	Product	Probe Card Type	
CUROL		Room Controller , Modem		Cobra - 2.0mil	
CuBOL	45 x 65	Room/Hot	Premium AP, MoDAP	MEMS Vertical	
	50	Room	Foundry	Cobra - 2.0mil	
TCFC	50	Room/Hot	Premium AP, MoDAP	MEMS Vertical	
	30	Room		Foundry	NAENAE Vortical
		Room/Hot	Premium AP, MoDAP	MEMS Vertical	

Probing Consideration

- In case of same tip force(O/D), impact on solder cap is different between Room and Hot temperature
- The key factors of our chip package process are **Height Variance and Stick Out** of Pillar

→ If Cu-P will be probing at room temperature, more higher force tip is able to use

C.H Hyun

A. Experiment Set-up

• Test Wafer Descriptions

- . Real Function Wafers of DV Controller : Peripheral Cu-Pillar
- . 135um Minimum Pitch
- . Cu-Pillar Type : Cu-BOL (45x65um)

• Probe Card Used

. Will Technology Cobra 2.0 Probe Card (& developed MEMS Vertical) . Cobra 2.0mil / 3,908pins / 2 Para

• Measurement Condition

- . Tester : T2K 8" Pogo Tower (ADVAN)
- . Prober : IP-300H (SECRON)
- . Image Capture : 3D Scope & FIB
- . Pillar Profile : 3D Scope

Test Chip Map

Cu-P With SnAg Caps

C.H Hyun

B. Probing DOE Result Table

(Probing Condition : 6 Times Probing per 1 Cap)

Sample	DOE Map	Overdrive (um)	Imago	Bump Height (um)		Mark Ratio
Jampie			Image	Before → After	Variance	(%)
#1		70		61.7 → 60.2	1.5	10.7 ~ 13.0
	100	80		61.0 → 59.3	1.7	10.7 ~ 14.2
	¹⁵ Operation Condition	5 90		61.8 → 59.8	2.0	11.8 ~ 15.2
#2		100		0 61.4 → 59.1	2.3	15.5 ~ 16.8
		110		61.2 → 58.6	2.6	15.5 ~ 18.1
	Overdrive Margin	120		61.3 → 58.5	2.8	15.5 ~ 18.3

C.H Hyun

C. 3D Scope Image : Production Product

Room: 77°F

	80um	100um	120um
Top View			
Side View			
Measure	Probe X : 17.2um Probe Y : 22.9um Bump Z : 63.8um	Probe X : 20.3um Probe Y : 23.7um Bump Z : 61.3um	Probe X : 22.3um Probe Y : 27.4um Bump Z : 60.8um

C.H Hyun

D. FIB Image : Cobra vs MEMS Vertical Probe

E. Pin Alignment & Plate Hole Processing Improvement

Source : Alexander Wittig(Global Foundry) "Probing Study of Fine Pitch Copper Pillars" SWTW 2013 A. The key Items of Probe tip Alignment

Guide Plate Hole diameter & alignment
The range of Alignment fluctuation

B. 45x65um CuBOL probing

Alignment Budget Target : ± 10um
Hole diameter : Target ± 4um
Hole alignment : Target ± 2um

4. Probe tip alignment : ± 6um

Cobra2.0 – OD 5mil

C.H Hyun

June 7-10, 2015 25TH ANNIVERSARY SW I

SW Test Workshop

F. Tip Force & Optical Mark Image(For TCFC Type)

Cu-P Diameter : 50um

G. Cobra 2.0 Achievement

- Cobra 2.0 vertical probe cards are more longer life time than MEMS vertical probe cards
 - . Test Environment 45um Over Diameter Solder Cap, Room Temperature Can use Cobra 2.0
 - . 7~8\$/pin Cost Reduction : Needle Cost + Extension Life time (SEC Case)
- Cobra style vertical probe card challenges needle alignment
 - . By improvement of plate processing, in less than ±6um Alignment achievement

Life Time Improve (vs MEMS – 1.5~2.0x)

X/Y Plate Hole Alignment (Target ±2um)

+2um

Process change for cost reduction

A. Cu-Pillar without Solder Cap

Probing Challenges	Tougher than Solder
Scheme	Small Probe Mark
Effects on Probing	 Hard to probe deeply Small probe mark for inspection
Solutions	1. Probe tip type selection 2. Probe force optimization

Source : Hao Chen(TSMC)

"Wafer Level Chip Scale Package Copper Pillar Probing" International Test Conference 2014, Seattle, Washington

	ce Aluminum Pad	Cu Pillar without Solder Cap	
Figure			
Design Cost	High (extra area overhead)	Low	
Probing Decisio	n 🗙	~	

Process change for cost reduction

B. Cu-P Process & Small Diameter Cu-P

Process change for cost reduction

Present Proces	<u>55</u>	New Process	
Plate		Plate	
Reflow		WLT	
AVI		Reflow	S
WLT		AVI	Ģ
	— SnAg – - Copper		•

Before Reflow

After Reflow

Source : DIPSOL Website Figure http://www.dipsol-jp.com/wp-content/uploads/

Туре	Cres	Tip Force	Life Time	
MEMS Flat	t Bad Good		Good	
MEMS Point	Good	Good	Bad	
Wire Point Good		Middle	Bad	
Cobra Flat Bad		Bad	Good	

Table data is expectation grade (SEC Simulation)
 → Next Step Study

C.H Hyun

O 1 5 SW Test Workshop

SEC Requirement of Flip-Chip Probing

Items	SOLDER			Cu-Pillar			
Pitch	150um 个	140-149um	135um 🗸	135um 个	110-135um	80-100um	65-80um
Solder Diameter	90um ↑	80um	70um	50um 45um	45um	30um	25um
Needle Diameter	60~75Ф	60-75Ф	50~65 Φ	50Φ ↓	45*45um ↓	30*30um ↓	25*25um ↓
Needle Type	Wire	Wire	Wire	Wire (Only Room Temp)	MEMS & Etc	Only MEMS	Only MEMS
Needle Shape	Flat	Flat	Flat	Flat	Flat	Flat (Point)	Flat (Point)
Tip Force (3mil)	7g ↓	6g 🗸	4.5g ↓	2.5g ↓	2g ↓	1.5g 🕹	1.5g 🗸
C.C.C	800[mA] 个			800[mA] 个			

• In Solder Ball type, SEC will be using wire type Probe Card for long life realization

- SEC Case : 2.0 ~ 2.5 Million Touch Down per 1 Probe Card
- Under 100um Cu-P product will be considering process change and MEMS point type

MEMS vertical probe - long life challenge

- Usable Budget extension of Probe tip Length
 - Present Level : 300K ~ 500K T/D → Goal : 1,000K T/D (~ 2016.03)
 - Usable Budget of Tip Length : 250 ~ 270um → Goal : 350um (~ 2016.06)
- Probe tip Cleaning Optimization
 - Cleaning Methodology : Polishing Pattern change (~ 2x Improved)
 - Cleaning Sheet : 1um Lapping Film & Abrasive Material change (~ 2x Improved)
 - Minimal Side Length : Tip Diameter 90% (~ 1.5x Improved)
- Probe tip Geometry & Materials Improvement
 - SEC Goal : 1.5 ~ 2.0 Million Touch Down per 1 Probe Card (~ 2017.01)
 - SEC will consistently try to collaborate of Probe Card Maker

for new materials & new concept

C.H Hyun

Summary

Probe card cost for Cu-P probing is higher than Solder Ball type and is increasing continued by small pitch & small diameter
 . 130um pitch (cost 20% ↑/pin) → 80um (20~30% ↑/pin) → 65um (?)

Cu-P product of over 45um diameter can use Cobra 2.0 & reduction cost
 . 7~8\$/pin Cost Reduction : Needle Cost + Extension Life time (SEC Case)
 . Depends on Factors : Test Temperature, Solder Cap Diameter

For more longer life time & more lower cost,
 Cu-P process change & tip material development should be evaluation

Next Step

• By change of Cu-P process, 2'nd reflow process can skip and probe card type flexibility is able to raise (Challenge Subject)

C.H Hyun

Thank You. 2-0-1-5

C.H Hyun