

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Production Parametric Test -Challenges and Surprising Outcomes Running in a High Volume Manufacturing Environment

Karen Armendariz, Celadon Systems John Reynolds, Freescale Semiconductor Greg Tyrpak, Freescale Semiconductor Greg Bottoms, Freescale Semiconductor Fred Huang, PhD, Freescale Semiconductor

Overview

SW Test Workshop

- Introduction
- Background
- Expected Outcome and Goals
- Actual Data
- Unexpected Results
- Side Benefits
- Conclusions
- Follow-on work

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

Introduction

What was the original motivation to consider other probe card suppliers?

Expanding test capabilities to support 90nm technology, requirements included:

- Smaller pad sizes
- Improved data resolution at parametric test
- Longer probe card life

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015

Introduction

Why are we here?
Unexpected benefits:
Exceptionally long lifetime performance
Low cost of ownership

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015

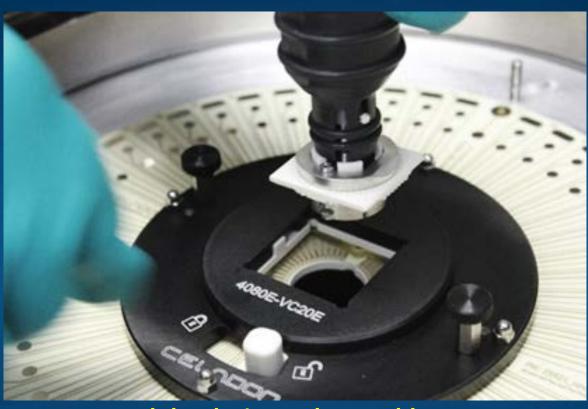
Background

 Freescale and Celadon began working together over 10 years ago in the device lab. The lab used Celadon's VersaTile[™] probe cards. The VersaTile[™] probe cards performed well in the device lab. Freescale test engineers decided to evaluate the VersaCore[™] probe card for production parametric probe, with Celadon participating in the qualification process.

SW Test Workshop

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang **June 7-10, 2015**

Background – Who is Celadon Systems?



- Celadon is a well established 18 year old privately held company with Headquarters in Apple Valley, Minnesota.
- All engineering, manufacturing and most repair is done in Minnesota. Celadon has a support center in Taiwan to support customers in Asia.
- 200+ global customers
- Core competencies: high performance probe cards, low leakage cables and interfaces

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

Background – VersaCore[™] VC20E

Modular design – changeable core Rated for -65C to 200C

Ultra low leakage, less than 5 femto amps/volt - room temp to 75C

Up to 48 channels

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

Expected Results - Goals

• Electrical Performance Goals:

Contact resistance: less than 2 ohms
Leakage: less than 5 pico amps

Mechanical Performance Goals:

Scrub marks less than 50% of padExceed 1.5 million touch downs

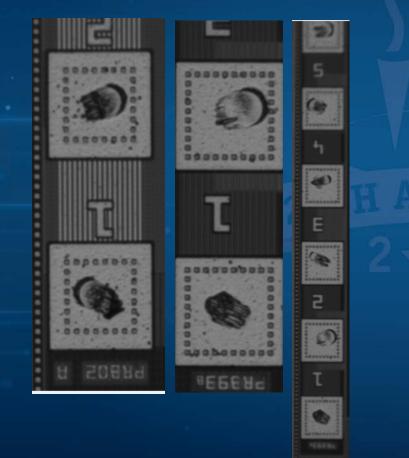
Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 2015

Qualification, Test Environment

Technology node: 90nm

- Pad Size: 70 microns => 50 microns
- Minimum Pitch: 100 microns
- Probe Material: Tungsten with 3% Rhenium
- Pad Material: AL, CU
- Probe angle: 9 degrees from Vertical
- Probe tip size:
 - 5-7 microns at start, later conditioned to 8-9 microns to support prober camera threshold
- Tester: Agilent 4070 series
- Probers: Tokyo Electron Limited (TEL) P8 series
- Test Temperature: 25C

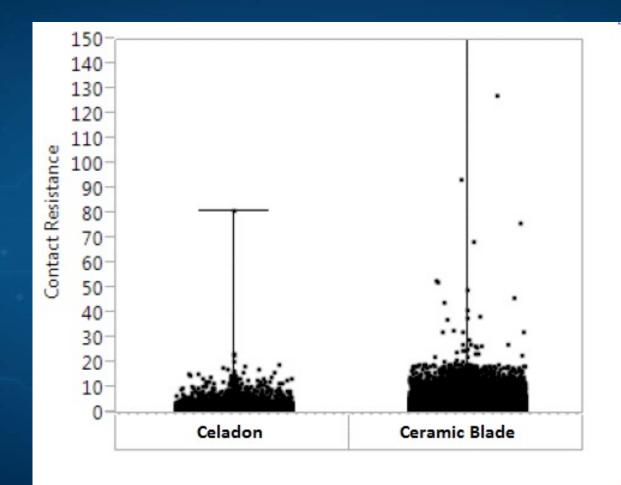

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

Actual Results – Probe Marks

25TH ANNIVERSARY

Blade Probe Marks

Celadon VC20E™ Probe Marks

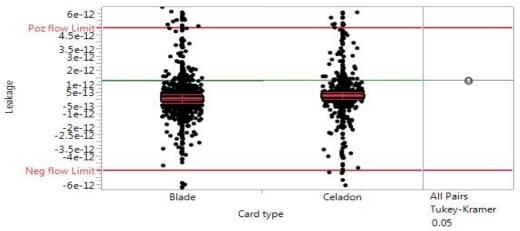


00000000 01237

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015

Actual Results – CRES in ohms


Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Actual Results - Leakage

Leakage signature had to match that of a ceramic blade card Limit = 5e-12 femtoamps

Oneway Analysis of Leakage By Card type

Quantiles							
Level	Minimum	10%	25%	Median	75%	90%	Maximum
Blade	-4.6e-11	-2.5e-13	-3.7e-14	3.6e-14	1.13e-13	4.07e-13	1.42e-10
Celadon	-4.8e-11	1.08e-13	1.82e-13	2.43e-13	3.04e-13	3.84e-13	1.17e-10
Means and	Std Deviation	ns					
Level	Number	Mean	Std Dev	Std Err Mean	Lower	95% Up	oper 95%
Blade	5961	1.301e-12	1.047e-11	1.356e-13	1.035	e-12 1	.567e-12
Celadon	9258	1.357e-12	8.228e-12	8.551e-14	1.189	e-12 1	.524e-12

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 2 0 1 5

Actual Qualification Summary

- Celadon's electrical performance and ability to probe small pad geometries met specifications
- Freescale chose Celadon to be the vendor of choice for specific technology nodes and is currently running high volume manufacturing using Celadon's VC20E Versacore[™]

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang **June 7-10, 2015**

Unexpected Results

- Unusually low mechanical wear. Touch down data took time to collect and has been monitored quarterly.
 => initial goal was to exceed 1.5 million touch downs until rebuild.
- Freescale probe floor began migration in Q2-2013
- In Q2-2014, Celadon VC20E VersaCore[™] probe cores in use exceeded touch down goal

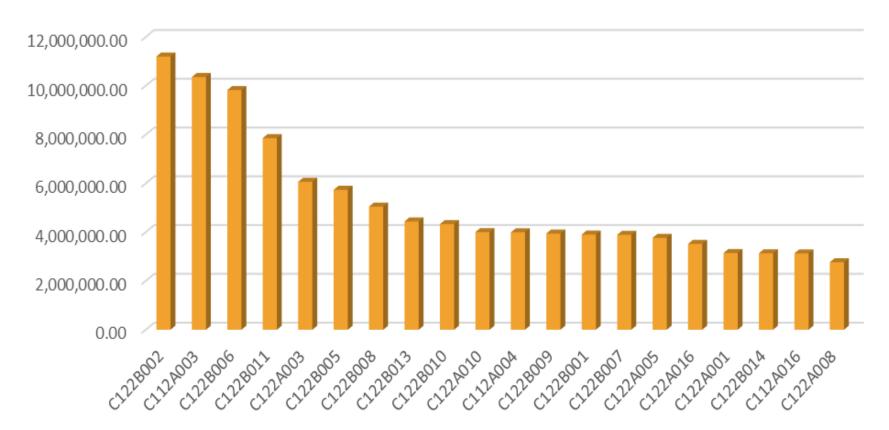
SW Test Workshop

Celadon has shipped 65 cores to date to Freescale

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang **June 7-10, 2015**

14

Unexpected Results

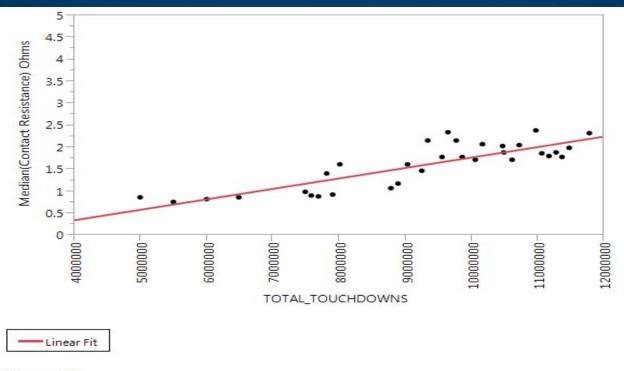

 To date, zero VersaCores[™] have been returned for wear

 Touch down data presented in next slide is a snapshot of data taken March 2015 **PLEASE NOTE: 100% of production** probe cards are still in use at Freescale and none have been rebuilt due to probe wear

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

Actual Touch Down Data March 2015

Actual Touch Downs as of Mar 18 2015



Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

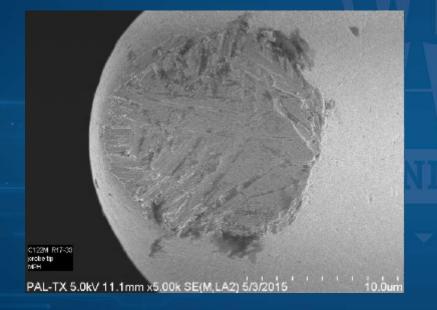
June 7-10, 2015

2 5TH ANNIVERSARY 2 0 1 5 SW Test Workshop

Oldest VersaCore[™], actual touch down data vs. CRES, 4/30/2015

Linear Fit

Median(Contact Resistance) = -0.608053 + 2.3775e-7*TOTAL_TOUCHDOWNS

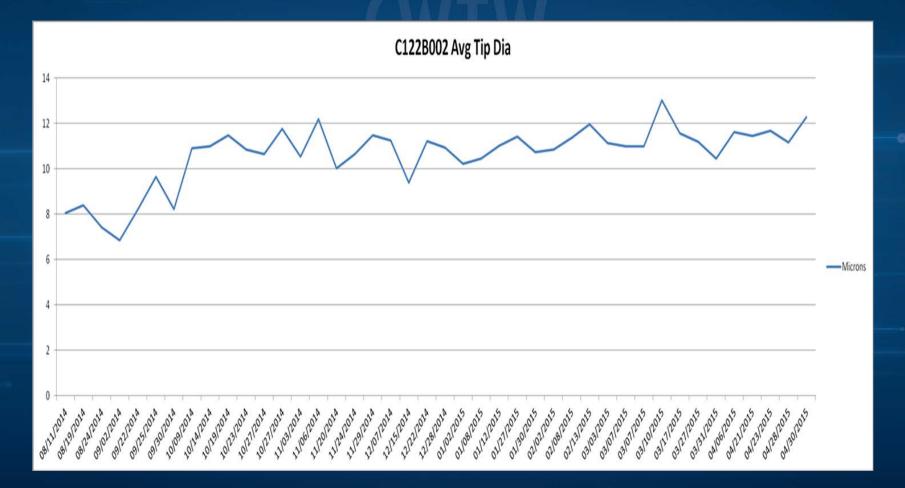

Analysis of Variance

Source	DF Su	m of Squares	Mean Square	F Ratio
Model	1	5.8675410	5.86754	74.7396
Error	30	2.3551933	0.07851	Prob > F
C. Total	31	8.2227343		<.0001*

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

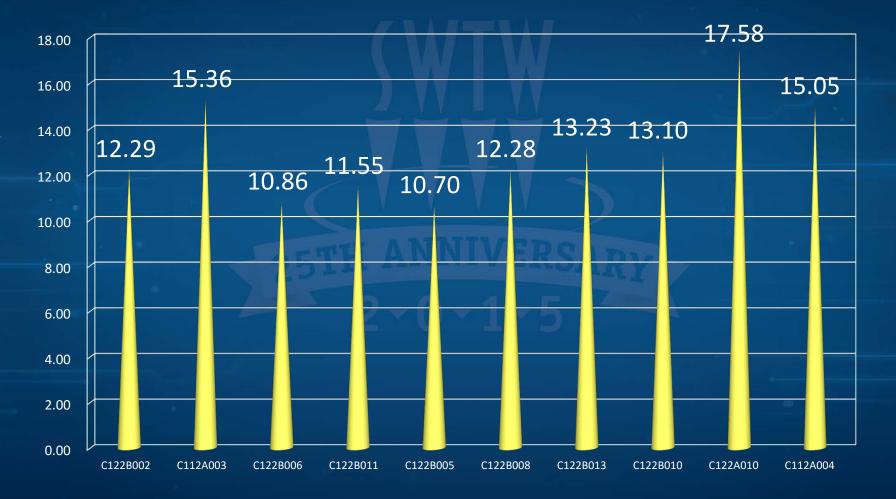
June 7-10, 2015 2015

Actual Probes on VersaCore[™] C122B002 after 12 Million Touchdowns



Armendariz/Reynolds/ Tyrpak/Bottoms/Huang Ju

June 7-10, 2015


Actual Probe Tip Diameter for VersaCore[™] with 12M TDs

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 2-0-1-5 SW Test Workshop

Longest Running VersaCores™ Actual Current Tip Diameters in microns

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015

15 25TH ANNIVERSARY

Estimated Tip diameter Wear Rate for 10 Longest Running VersaCores™

- Celadon conditioned tips to ~8 microns at outgoing
- Average current tip diameter is ~13.2 microns
- Average TDs ~5.7 million

 Average wear rate for longest running ten cores: ~1,000,000 TDs/micron of tip wear

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang **June 7-10, 2015**

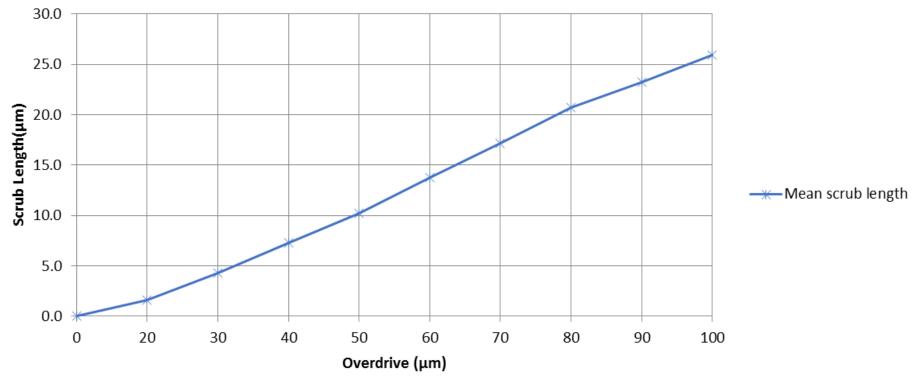
Why are probes lasting so long?

Two key factors:

1 - Probe profiling: Celadon's ability to "tune" the scrub and force on the pad to optimize probe-pad interaction
2 - Optimized probe cleaning: in-situ and off-line

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

VersaCore[™] Probe "Tuning"

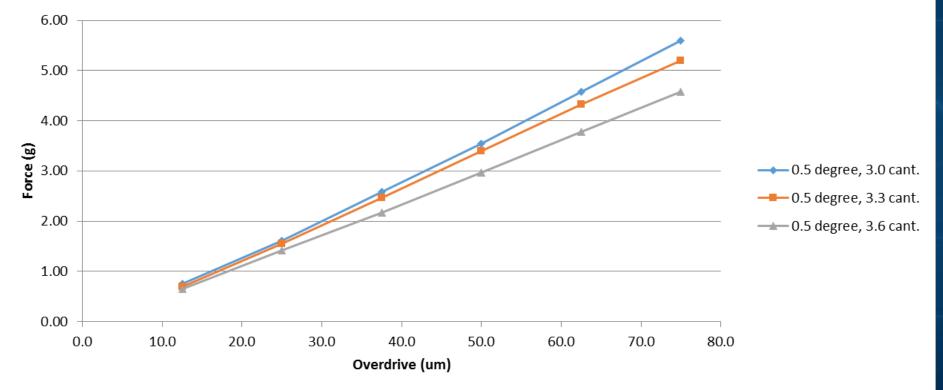

Celadon utilizes proprietary processes to allow for precision probe profiling during development and then automation in the manufacturing process

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

2 0 1 5 SW

VersaCore[™] Probe "Tuning" – Scrub Length vs. Overdrive

Mean Scrub Length Vs. Overdrive


Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015

25TH ANNIVERSARY

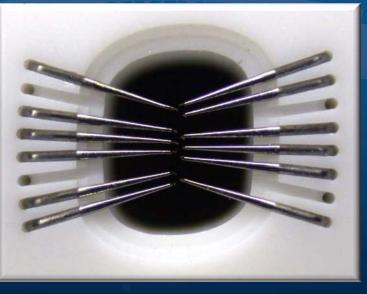
VersaCore[™] Probe "Tuning" – Gram Force vs. Overdrive

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

25

Non-aggressive Cleaning Regime

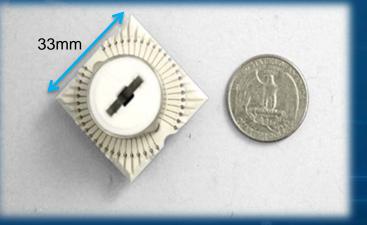

- Celadon recommends a soft toothbrush along with ethyl alcohol in the device and modeling labs.
 - The toothbrush method was not practical in production.
- Freescale developed an in-situ and regular off-line cleaning process utilizing ITS Probe Polish (PP-2001-9903SCM) 99% grit media, coupled with the more aggressive ITS Probe Form media on occasion.
 - These methods have resulted in minor wear to the probe while maintaining acceptable CRES.

SW Test Workshop

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang **June 7-10, 2015**

Side Benefit – Superior Tip Placement Control

- Celadon's patented Crash Resistant Technology™ provides additional tip placement control over the blade style card, with smaller probe tip diameters on reduced pads sizes.
- Additionally, there have been no significant issues with probe tip placement or probing off pad using the Celadon cards on several thousand wafers of C86 run so far.



Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 25TH ANNIVERSARY SW

Side Benefit – Reduced Storage Space

- 33mm VersaCore[™] storage requirements have significantly reduced storage space requirements on the test floor.
- System is comprised of two standard 19" rack enclosures.
- Storage drawer [19" x 3.5"]
 - VC20E[™] Motherboard 2 EA
 - VC20E[™] Core 20 EA
 - Probe card Maintenance Fixture
- Storage drawer [19" x 7"]
 - Probe Card Transfer Storage

Dell Computer Workstation – for electronic tracking of assets.

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Side Benefit – Reduced Storage Space

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Conclusions

- Precise probe profiling during the development phase, coupled with patented tip placement control, enables controlled force and scrub on the pad resulting in reduced wear.
- Dialing in a non-aggressive in-situ + periodic off line cleaning regime maintains the CRES while reducing wear.
- The final conclusion is that the VersaCore[™] offers the best of both worlds:
 - very low leakage probe card with the ability to probe smaller pads
 - exceptionally long probe card life resulting in a *lower cost of* ownership

SW Test Workshop

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015

30

Follow-on work

- Freescale and Celadon will continue to monitor
 VersaCore[™] probe card touch downs and wear.
- Adjustments will be made as needed to cleaning and maintenance programs to create a predicable rebuild model over time.

SW Test Workshop

 Celadon plans to run DOE's to further understand probe wear vs. probe bends.

June 7-10, 2015

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang

31

Acknowledgment

A huge thank you to the following people for supporting the engineering development effort through out the VersaCore[™] implementation process.

Seng Yang, Celadon Systems Matt Page, Celadon Systems **Bryan Root, Celadon Systems Barbra Gerard, TEXSource Kris Huston, Celadon Systems Garrett Tranquillo, Celadon Systems** Mark Rosvold, Celadon Systems

Armendariz/Reynolds/ Tyrpak/Bottoms/Huang June 7-10, 2015