

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

OPTIMIZATION OF PROBE CAPABILITY USING MACHINE/PROCESS CAPABILITY STUDY AND HOOKE'S LAW EXISTENCE ON BLADE TYPE NEEDLE AT PROBE PROCESS

ON Semiconductor[®]

Wiljelm Carl K. Olalia Process Engineer II Probe and Die Sales Department ON Semiconductor Philippines

June 7-10, 2015

OPTIMIZATION OF PROBE CAPABILITY USING MACHINE/PROCESS CAPABILITY STUDY

June 7-10, 2015 2-0-1-5 SW Test Workshop

- Introduction / Background
- Objectives / Goals
- Methods / Materials / Procedures
- Results / Relevant Findings / Key Data
- Discussion of Results / Strengths / Weaknesses, etc.
- Summary / Conclusion
- Follow-On Work

At 1000 ppm, Probe Damage related to Probe Needle is on top of Pareto in terms of wafer scrappage reason.

100% of those 1000 ppm have been contributed by the Prober E which uses a Blade Type Needle for Probing.

100% of those 1000 ppm have been contributed by the Prober E which uses a Blade Type Needle for Probing.

Wiljelm Carl K. Olalia

Further data stratification shown Top Devices with high Probe Damage Occurrence

Mask Name	Total Occurrence	Small Pad Size	Big Pad Size
UC384XB	81	3.6 x 4.1 mils	4.2 x 4.2 mils
LP2950_1	69	3.5 x 4.0 mils	4.2 x 4.1 mils
NCP1117	66	4.1 x 3.4 mils	7.7 x 6.3 mils
LM2575_6	61	3.3 x 3.2 mils	7.6 x 7.3 mils
MC33063	39	3.4 x 4.0 mils	4.2 x 4.2 mils
NCP5331	36	3.4 x 3.4 mils	4.0 x 3.8 mils
NCV4275	32	3.7 x 3.6 mils	6.0 x 5.8 mils
NCP5422	24	3.6 x 3.5 mils	4.0 x 4.0 mils
MC34067	23	3.5 x 4.0 mils	4.3 x 4.1 mils
L4949	21	3.3 x 3.2 mils	4.8 x 4.4 mils
TLV431	19	3.1 x 3.	1 mils
CS5141X	17	4.3 x 4.	1 mils

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

Devices with high PND occurrence have an average bond pad size less than 4 x 4 mils compared with devices with no PND occurrence. Initial assumption on high PND occurrence is due to Prober X when using blade type needle is not capable of probing devices with a minimum bond pad

What is Probe Damage ?

- Is a phenomena when a part of a die specifically at the Pad Area such as Seal Ring or other metallization has been damage by the Probe Needle during Testing.
- Probe damage is the number one visual defect contributor at wafer sort process having a direct impact on yield and cycle time.

No	Defect visual aid	Remarks
1	REJECT	Probe marks touching the seal ring of the bond pad
2		Expose oxide on the bonding pad

What are the causes Probe Damage ?

• OSPI Engineering Team Brainstorm using Ishikawa Diagram for the Possible Sources of Probe Damage. Specific Factors are came from Man, Machine, Method and Material.

What are the causes Probe Damage ?

Probe Capability limitation in terms of minimum bond pad opening has been identified as one of the many causes of Probe Damage on wafers.

Smaller pad is high risk to Probe Damage.

Wiljelm Carl K. Olalia

Objective/Goals

□ To determine the current capability of Prober E using Blade Type needle in terms of minimum bond pad capability and how it impact the probe quality.

- To optimize the current capability using the cheapest way.
- The Machine/Process Capability Study only focus on Prober E.

0

• Materials involve on the Study

e

• Experiment Condition

- 1. Experiment has been run as normal Probe Process without engineering intervention.
- 2.All Probe parameters remains constant throughout the experiment.
- 3. Prober that was used during the experiment is A1 condition
- 4. Probe-card needles are newly build.
- 5. The experiment only cover 3 wafers for the data gathering that involve sampling and randomization.

e

• Phase 1 Deliverables

 MPCPs Phase 1 is Process Characterization wherein all functional characteristics of the machine including sub-process, response and input variables have been determined and summarized

e

• Phase 2 Deliverables

- MPCPs Phase 2 is Metrology Characterization wherein all measurement/gauge use for KPOV of the process has been subjected in MSA Study. This is to verify the soundness of current process

measuring equipment

	Num	ber of Appr	aisers =	3	Gage:	Metrolo	ov Char	octeriza	tion	Date:	16-Se	p.11	Enter Gage Name, Part Name, Date, and Your Name
		Number of	Parts =	5	Part:	N	ikon HP	M	Perfor	ned By:	Carl C	lalia	The numbers fields will fill in automatically
		Number of	Trials =	3	Tole	rance =		Leave ble	ink for one	sided spe	e.		Enter Tolerance Width (Upper - Lower)
- V -			Enter	data and	d Informa	ation in	open cel	ls . Lea	ve cell b	lank if d	lata is mi	ssing.	
10			*lf	Range (heck di	iplays "I	FLAG", c	heck da	ita for er	rors or n	erun tria	(s)	
							Pa	ts					
_	Appraisers		1	2	3	4	5	6	1	8	9	10	You can enter less than 10 parts
	Krista	1	1.417	0.512	1.358	3.76	3.661						Enter data on this line first
	Almenanza	Trials 2	1.437	0.551	1.358	3.74	3.661						Leave rightmost part numbers empty if appropriate
	2.140/333	3	1.398	0.007	1.339	3.76	3.602						Leave Tital 3 rows empty if only 2 thats are run
E M		Range	0.039	0.045	0.019	0.02	0.059						
		Check*	19.09	2 6244	16 442	126 70	110 33						
	Dee	(EADOIL)	10.00	2.0244	10.443	120.79	119.33	_					
_	Dec	Trials 2	1.398	0.512	1.200	3.74	3.583						
	2 0968667	inais 2	1.390	0.512	1.200	3.74	3.555						
	2.000000	Dance	0	0.512	0.005	0.009	0.048						
_		Check	Ň	Ť	0.000	0.000	0.040						
Ψ.		(EBpart)2	17.59	2,3593	14 251	125.69	115.28						
	Johert	1	1 398	0.512	1 334	3.74	3.622						
	Awa	Trials 2	1.398	0.512	1.358	3.75	3.602						
	2.1229333	3	1.398	0.531	1.367	3.72	3.602						
		Range	0	0.019	0.033	0.03	0.02						
		Check*											
		(ECpart) ²	17.59	2.418	16.475	125.66	117.2						
	P	art Averages	1.4044	0.5234	1.321	3.7423	3.6097						
	AN	AVC	D	IF .	S	S	M	S			Prot	∋>F	
	Appraisers		1	2	0.0	01	0.0)1					
	Parts		4	4	76	95	19	24					
	Appraiser*	Parts	8	8	0.)1	0.	00	5.	68	0.0001	97889	If Prob>F is 0.05 or smaller, then Appraisers*Parts interaction
	Gage(Error)	3	0	0)1	0.	00	Appraise	r'Part Inter	raction IS Si	gnificant	is significant; check plots to determine why
	Total		4	4	76	99							A significant Appraisers*Parts interaction means that apprais
		Ester De			TATING 1	Of a secolo	(Territoria)		C 001 -		nd	ic .	tend to obtain different measurements from identical parts
	SOURCE O	Enter Ph	DCESS DE	stribution	Vvidth in	Sigma's	VARI	7 5.15 CI	6 UUJ =	5.15 FAL	TOLER	ANCE	The ALAO method uses 5.12, other customers may use 0.00 \$15 standard dariations and as the partial 00% of a
	Repeatabili	v (EV - Equin	ment Var)	0.02		0.08	t nyfi	1.0	9%	- OLEN	E	normal distribution
	Reproducib	lity (AV - And	raiser Va	r)	0.02	_	0.10		1.0	596			If SUR-SR of Tolerance is black, enter a Tolerance shows
	Appraiser *	Equipment	nteraction	n (IV)	0.02		0.10		1.3	6%	#DIV	//0!	
	Repeatabilit	y & Reprodu	cibility (Ra	6R)	0.03		0.17		2.2	0%			
	Part Variati	on (PV)			1.46		7.53		99.9	96%			
	X		and the second sec	_				5.00				_	

e

• Phase 3 Deliverables

 MPCPs Phase 3 is Capability Determination wherein all KPOV has been subjected for Capability Analysis using below data collection plan.

- 2. Repeat #1 until 30 data sets is achieved.
- Compute for the Variation O Scrub Mark of each data set, then compute for the average of the entire data sets.

Wiljelm Carl K. Olalia

e

- Phase 4 Deliverables (If Applicable)
 - MPCPs Phase 4 is Optimization Stage wherein all applicable KPIV of the process has been subjected in DOE. This is to determine the optimum process parameters.
- Phase 5 Deliverables
 - MPCPs Phase 5 is Control Stage where all Standardization, Fan-out, Documentation and CI executed.

• Phase 1 Result

 Critical Responses (KPOV) and Critical Input (KPIV) has been determined during MPCPs Phase1.
 Result has been derived from consolidate and summarized C&E Matrix.

Response (Dependent) Variables	Type of Data	Property of Data	Measurement Scale
Wafer Breakage	Attribute	Discrete	Nominal
Probe Needle Damage/Exposed Oxide	Attribute	Discrete	Nominal
Die Surface Damage/Scratches	Attribute	Discrete	Nominal
Wafer Crack	Attribute	Discrete	Nominal
Wafer Chippings	Attribute	Discrete	Nominal
Offset/Shifted Ink Dots	Attribute	Discrete	Nominal

Machine Nar	ne: Electroglas 2001X			
Category	Sub-Process Characteristics			
Man	Operator Skills			
	Cantilever Probing			
Method	Vertical Probing			
	Inking			
	Wafer Size			
	Wafer Thickness			
	Die Size			
Material	Bond pad size			
	Blade Type Needle			
	Epoxy Type Needle			
	25 mils Xandex Ink			
(2 mils overtravel			
	3 mils overtravel			
Measurement	4 mils overtravel			
Weasurement	5 mils overtravel			
	100ms Inker Speed			
	60ms Inker Pulse			
	25 deg Room Temp			
Environment Facilities	60% RH Level			
	10K Class Particle Count			

y = Function (x)

Wiljelm Carl K. Olalia

• Phase 2 Result

- Total GR&R is 2.2 %.

Nun	nber of Appr	aisers =	3	Gage:	Metrolo	gy Char	acteriza	tion	Date:	16-S	ep-11	Enter Gage Name, Part Name, Date, and Your Name
	Number of	Parts =	5	Part:	N	ikon HP	М	Perfor	med By:	Carl	Olalia	The numbers fields will fill in automatically
	Number of	I rials =	3	lole	rance =		Leave bla	ank for one	-sided spe	c.		Enter Tolerance Width (Upper - Lower)
		Enter	data and	1 Informa book die	ation in a	open ce	lls.Lea	ve cell t	plank if d	ata is m	iissing.	
			Kange c	neck us	spiays r	LAG, C	nteck uz	la ioi ei			11(5)	
Appraisers		1	2	3	4	5	6	7	8	9	10	You can enter less than 10 parts
Krista	1	1.417	0.512	1.358	3.76	3.661						Enter data on this line first
Almenanza	Trials 2	1.437	0.551	1.358	3.74	3.661						Leave rightmost part numbers empty if appropriate
2.1407333	3 3	1.398	0.557	1.339	3.76	3.602						Leave Trial 3 rows empty if only 2 trials are run
	Range	0.039	0.045	0.019	0.02	0.059						
	Check*											
	(SApart) ²	18.08	2.6244	16.443	126.79	119.33						
Dec	1	1.398	0.512	1.256	3.74	3.583						
Mendiola	Trials 2	1.398	0.512	1.258	3.74	3.553						
2.0968667	7 3	1.398	0.512	1.261	3.731	3.601						
	Range	0	0	0.005	0.009	0.048						
	Check*											
	(SBpart)*	17.59	2.3593	14.251	125.69	115.28						
Jobert	1	1.398	0.512	1.334	3.74	3.622						
Awa	Trials 2	1.398	0.512	1.358	3.75	3.602						
2.1229333	3 3	1.398	0.531	1.367	3.12	3.602						
	Range	U	0.019	0.035	0.03	0.02						
	(SCpart) ²	17.59	2 / 18	16 475	125.66	117.2						
	Part Averages	1 4044	0.6234	1 321	3 7/23	3 6097						
	Fait Averages	1.4044	0.0204	1.321	3.1423	3.0037						1
ΔΝ	ΙΟΛΑ	D	F	S	S	M	IS		F	Pro	ob≥F	1
Appraisers	s		?	0.	01	0	01					1
Parts		4	1	76	95	19	.24	1				
Appraiser*	*Parts	8	3	0.	01	0.	00	5.	68	0.000	197889	If Prob>F is 0.05 or smaller, then Appraisers*Parts interaction
Gage(Erro	r)	3	0	0.	01	0.	00	Appraise	er*Part Inter	action IS 9	Significant	is significant; check plots to determine why
Total		4	4	76.	99							A significant Appraisers*Parts interaction means that appraise
										n	dc	tend to obtain different measurements from identical parts
SOURCE O	Enter Pro	ocess Dis	stribution	Width in	Sigma's	(Typicall	y 5.15 or	r 6.00) =	5.15	TOLE	DANCE	The AIAG method uses 5.15, other customers may use 6.00
Bonoatabili	IT VARIATION	mont Var		0.00	MA	0.09	ATION	10		TOLE	RANCE	0.10 standard deviations enclose the central 99% of a
Reproducit	hility (AV - Ann	raiser Va	r)	0.02		0.00		1.0	1976			If %P&P of Tolerance is blank, enter a Tolerance shove
Approvach	Equipment	neración	.,	0.02		0.10			0 /0	#DI	IV/0!	in verseere of a bioletance is blank, enter a a bioletance above
Repeatabili	ity & Reproduc	cibility (R8	&R)	0.03		0.17		2.2	20%			
Part Variat	IOT (PV)			1.40		1.55	_	99.	90%			
Total Proce	ess Variation (TV)		1.4	46	7.	53]

Wiljelm Carl K. Olalia

• Phase 2 Result

- GR&R on the affected Measurement tool has been conducted.

Probe marks sample produce using 3 mils Over travel

Probe marks sample produce using 4 mils Over travel

Probe marks sample produce using 5 mils Over travel

Phase 3 Result (Blade)

Given the mean length and combined standard deviation of probemark size and placement. Minimum pad opening capability of Probe E using Blade Type needle is 4.5 wiljeim Carl K. Olalia June 7-10, 2015 25TH ANNIVERSARY 2015 SW Test Workshop

• Phase 3 Result (Epoxy)

⊾ength				Formula for Capability:
	⊿ Quantiles	⊿ Moments	⊿	r official for equipability:
	100.0% maximum 2.	15 Mean 1.7433333	⊿ Parameter Estimates	$Cp = \mu + 3\delta$; where $\delta = \sqrt{(\delta_1^2 + \delta_2^2)}$
	99.5% 2.	15 Std Dev 0.2105876	Type Parameter Estimate Lower 95% Upper 95%	-p p
	97.5% 2.	15 Std Err Mean 0.0384479	Location µ 1.7433333 1.6646986 1.821968	
	75.0% quartile 1.9	15 Lower 95% Mean 1.6646986	Dispersion σ 0.2105876 0.1677134 0.2830961	Given Values:
	50.0% median 1.7	05 N 30	-2log(Likelihood) = -9.33490896320759	
	25.0% quartile 1.57	75	⊿ Goodness-of-Fit Test	u = 1.74 mils
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2	10.0% 1.4	81	Shapiro-Wilk W Test	$\delta_1 = 0.21$ mils
	2.5%	1.4	W Prob <w< td=""><td>$\delta_2 = 0.14$ mils</td></w<>	$\delta_2 = 0.14$ mils
Normal(1.74333,0.21059)	0.0% minimum 1	1.4	0.954952 0.2290	
			Note: Ho = The data is from the Normal distribution. Small	
			p-values reject Ho.	Computation for δ:
Placement			10	
	⊿ Quantiles	⊿ Moments	⊿	$\delta = \sqrt{(\delta_1^2 + \delta_2^2)}$
	100.0% maximum 0.	84 Mean 0.4693333	⊿ Parameter Estimates	$\delta = \sqrt{0.21}$ mils ² + 0.14 mils ²
	99.5% 0.	84 Std Dev 0.136658	Type Parameter Estimate Lower 95% Upper 95%	$\delta = 0.25$ mils
	97.5% 0.	84 Std Err Mean 0.0249502 49 Upper 95% Mean 0.5203623	Location µ 0.4693333 0.4183044 0.5203623	
	75.0% quartile 0.51	75 Lower 95% Mean 0.4183044	Dispersion σ 0.136658 0.1088354 0.1837114	
	50.0% median 0.4	65 N 30	-2log(Likelihood) = -35.2801281903644	Computation for Cp:
	25.0% quartile 0.35	75	⊿ Goodness-of-Fit Test	
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	10.0% 0.	33	Shapiro-Wilk W Test	$Cp = \mu + 3\delta$
	2.5% 0.	22	W Prob <w< td=""><td>Cp = 1.74 mils + 3 (0.25 mils)</td></w<>	Cp = 1.74 mils + 3 (0.25 mils)
Normal(0.46933,0.13666)	0.0% minimum 0.	22	0.942897 0.1089	$Cp = 2.50 mils \approx 3.0 mils$
			Note: Ho = The data is from the Normal distribution. Small	
			p-values reject Ho.	

Given the mean length and combined standard deviation of probemark size and placement. Minimum pad opening capability of Probe E using Epoxy Type needle is 3 x 3 mils Wiljelm Carr K. Olalia June 7-10, 2015

• Phase 3 Result (Summary)

Sub-Process	Wafer Size	Wafer Thickness	Die Size	Bond Pad Opening	Optimization Needed
Blade Type Cantilever Probing	4 to 6 inch	8 mils≥X	n/a	4.5 x 4.5 mils ≥ X	Yes
Epoxy Type Cantilver Probing	4 to 6 inch	8 mils≥X	n/a	3.0 x 3.0 mils ≥ X	Not

Given Current Minimum BPO Capability of Prober assuming extreme over-travel setting was used (5 mils for Blade, 3 mils for Epoxy) during Probe Process.

• Phase 3 Result (Summary)

	A (mils)	B (mils)
Blade	4.5	4.5
Ероху	3	3

Since the minimum bond pad being probe is at 3.5 um. Estimated cpk is only at 0.6 which is equivalent to 1.75 sigma level or approximately 400K ppm. Prober X using Blade Type Needle is not capable.

Wiljelm Carl K. Olalia

• Phase 4 (Optimization Stage)

4 M's	Types	Remarks		
Man	Probe Operator	No significant effect on the PND issue		
Machine	Prober E	Could not be changed.		
Method	Overtravel Setting	Could be further explore		
	Wafer Size	Not a factor		
	Die Size	Not a factor		
	Bond Pad Size	Out of our control		
Material	Needle Type	Required big change. Needed to re-characterized		
	Needle Diameter	Required big change. Needed to re-characterized		

To Probe Process using Blade Type Needle Capable, all process inputs has been revisited and checked what can be optimized. Over-travel is one of the KPIV that cab easily be manipulated for Optimization.

Wiljelm Carl K. Olalia

• Phase 4 (Optimization Stage)

Factor	rs (Independent \	/ariable)				
	Name 1 Over-travel	Setting 4	I			
Respo	nses (Independe 1 Probemark 2 Probemark 3 Probemark 3 Sigma of 4 Placement 5 Minimum B	ent Variable) Length Mean Placement Variation Probemark Length a Variation BPO	nd			
	Factors		Re	esponses		
Run	Over-travel Settings	Probemark Length Mean	Probemark Length Variation	Probemark Placement Variation	3 Sigma of Probemark Length and Placement Variation	Minimun BPO
1	2					
2	3					
3	4					
4	5					

Level 4 Completely Randomized Design experiment has been used for optimization.

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

• Phase 4 (Optimization Stage)

Given the mean length and combined standard deviation of probe-mark size and placement. Minimum pad opening capability of Probe E using Blade Type needle at 2 mils Over-travel is 2.5 x 2.5 mils. Wiljelm Carl K. Olalia June 7-10, 2015 25TH ANNIVERSARY 2 0 1 5 SW Test Workshop

• Phase 4 Result

Minimum BPO Capability Computation for 3 mils Over-travel Setting

Length				
	Quan	tiles		Fitted Normal
	100.0%	maximum	2.6100	Parameter Estimates
	99.5%		2.6100	Type Parameter Estimate Lower 95% Upper 95%
	97.5%		2.6100	Location II 2 214 2 1451361 2 2828639
	90.0%		2.4570	Dispersion σ 0.1844208 0.146874 0.2479197
	75.0%	quartile	2.3425	0.1011200 0.1011200
	50.0%	median	2.2100	
	25.0%	quartile	2.1075	
	10.0%		1.9330	
1.6 1.8 2 2.2 2.4 2.6 2.8	2.5%		1.7900	
	0.5%		1.7900	
Normal/2 214 0 18442)	0.0%	minimum	1.7900	
Normal(2.214,0.10442)				
Placement				
Placement	(-			
Placement	Quan	tiles		Fitted Normal
Placement	Quan 100.0%	i tiles maximum	2.6200	Fitted Normal Parameter Estimates
Placement	Quan 100.0% 99.5%	tiles maximum	2.6200 2.6200	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Upper 95%
	Quan 100.0% 99.5% 97.5%	tiles maximum	2.6200 2.6200 2.6200	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Upper 95% Location µ 2.3456667 2.2949994 2.3963339
Placement	Quan 100.0% 99.5% 97.5% 90.0%	i tiles maximum	2.6200 2.6200 2.6200 2.5380	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Location μ 2.3456667 Dispersion σ 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0%	tiles maximum quartile	2.6200 2.6200 2.6200 2.5380 2.4625	Fitted Normal Parameter Estimates Type Parameter Estimate Location μ 2.3456667 2.2949994 Dispersion σ 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0% 50.0%	tiles maximum quartile median	2.6200 2.6200 2.6200 2.5380 2.4625 2.3300	Fitted Normal Parameter Estimates Type Parameter Estimate Location μ 2.3456667 2.2949994 Dispersion σ 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0% 50.0% 25.0%	tiles maximum quartile median quartile	2.6200 2.6200 2.5380 2.4625 2.3300 2.2475	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Upper 95% Location μ 2.3456667 2.2949994 2.3963339 Dispersion 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0% 50.0% 25.0% 10.0%	tiles maximum quartile median quartile	2.6200 2.6200 2.5380 2.4625 2.3300 2.2475 2.1910	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Upper 95% Location μ 2.3456667 2.2949994 2.3963339 Dispersion 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0% 50.0% 25.0% 10.0% 2.5%	tiles maximum quartile median quartile	2.6200 2.6200 2.5380 2.4625 2.3300 2.2475 2.1910 2.0800	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Upper 95% Location μ 2.3456667 2.2949994 2.3963339 Dispersion σ 0.1356894 0.108064 0.1824093
Placement	Quan 100.0% 99.5% 97.5% 90.0% 75.0% 50.0% 25.0% 10.0% 2.5% 0.5%	tiles maximum quartile median quartile	2.6200 2.6200 2.5380 2.4625 2.3300 2.2475 2.1910 2.0800 2.0800	Fitted Normal Parameter Estimates Type Parameter Estimate Lower 95% Location μ 2.3456667 2.2949994 Dispersion σ 0.1356894 0.108064 0.1824093

Formula for Capability: Cp = μ + 3 δ ; where δ = $\sqrt{(\delta_1^2 + \delta_2^2)}$ Given Values: u = 2.21 mils $\delta_1 = 0.18$ mils $\delta_2 = 0.14$ mils Computation for δ : $\delta = \sqrt{(\delta_1^2 + \delta_2^2)}$ $\delta = \sqrt{0.18}$ mils ²+ 0.14 mils ² $\delta = 0.23$ mils Computation for Cp: $Cp = \mu + 3\delta$ $C_p = 2.21 \text{ mils} + 3 (0.23 \text{ mils})$ Cp = 2.90 mils ≈ 3.0 mils

Given the mean length and combined standard deviation of probe-mark size and placement. Minimum pad opening capability of Probe E using Blade Type needle at 3 mils Over-travel is 3.0 x 3.0 mils. Wiljelm Carl K. Olalia June 7-10, 2015 25TH ANNIVERSARY 2 0 1 5 SW Test Workshop

Discussion of Results / Strengths / Weaknesses • Phase 4 Result

ils			
ength			Formula for Capability:
· _ [] •	Quantiles 100.0% maximum 3.5200 20.5% 2.5200	Fitted Normal Parameter Estimates	Cp = μ + 3δ ; where δ = $\sqrt{(\delta_1^2 + \delta_2^2)}$
	99.5% 3.5200 97.5% 3.5200 90.0% 2.5370 75.0% quartile 2.3575	Type Parameter Estimate Lower 95% Upper 95% Location μ 2.2433333 2.1062777 2.3803889 Dispersion σ 0.3670416 0.2923145 0.4934196	Given Values:
15 2 25 3 35 4	50.0% median 2.2900 25.0% quartile 2.0900 10.0% 1.8870 2.5% 1.1100		$\mu = 2.24$ mils $\delta_1 = 0.37$ mils $\delta_2 = 0.08$ mils
Normal(2.24333,0.36704)	0.5% 1.1100 0.0% minimum 1.1100		Computation for δ:
	Quantiles	Fitted Normal Parameter Estimates	$\delta = \sqrt{(\delta_1^2 + \delta_2^2)}$ $\delta = \sqrt{0.37 \text{ mils}^2 + 0.08 \text{ mils}^2}$
	99.5% 2.4100 97.5% 2.4100 90.0% 2.2790 75.0% 2.2500	Type Parameter Estimate Lower 95% Upper 95% Location μ 2.1986667 2.1677543 2.229579 Dispersion σ 0.0827849 0.0659304 0.1112889	$\delta = 0.38$ mils
	75.0% quartile 2.2500 50.0% median 2.1950 25.0% quartile 2.1575 10.0% 2.0900		Computation for Cp: Cp = $\mu + 3\delta$
2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45	2.5% 2.0200 0.5% 2.0200 0.0% minimum 2.0200		Cp = 2.24 mils + 3 (0.38 mils) $Cp = 3.37 \text{ mils} \approx 3.5 \text{ mils}$
Normal(2.19867,0.08278)	0.070 mmmmulli 2.0200		

Given the mean length and combined standard deviation of probe-mark size and placement. Minimum pad opening capability of Probe E using Blade Type needle at 4 mils Over-travel is 3.5 x 3.5 mils. Wiljelm Carl K. Olalia June 7-10, 2015 25TH ANNIVERSARY 2 0 1 5 SW Test Workshop

Discussion of Results / Strengths / Weaknesses • Phase 4 Result

Dun			Fact	tors			Responses	
Kuli	Prober	Needle Type	Process	Device	Over-travel Settings	Probemark Length	Probemark Placement	Minimum BPO
1	Prober	Blade Needle	Probing	LM124SH	5	2.79	0.3	4.5 x 4.5
2	E	Blade Needle	Probing	LM124SH	3	2.21	0,14	3.0 x 3.0
3		Blade Needle	Probing	LM124SH	2	1.84	0.14	2.5 x 2.5
4		Blade Needle	Probing	LM124SH	4	2.24	0.08	3.5 x 3.5

H ANNIVERSARY

Using Over-travel less than 5 mils, Minimum pad opening capability of Prober E using Blade Type needle are less than 3.5 mils. This capability is meeting the requirement of devices with small pad opening.

• Analysis

- Correlation between Over-travel and Probe-mark Length, Variation and Capability are directly

Robustness of the process is present if lower over-travel setting (2 - 4 mils) will be used instead of higher setting (3 -5 mils).

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

• Risk Assessment

Capability Ana	lysis						
Specification	Value	Portion	% Actual				
Lower Spec Limit		Below LSL					
Spec Target		Above USL	1.6667				
Upper Spec Limit 3.5 Total Outside		1.6667					
⊿ Long Term Sig							
\square			Capability	Index	Lower CI	Upper	CI
	`		CP				
	\backslash		CPK	0.895 0.766		1.022	
-3s / Mean	+3s		CPM				
	\rightarrow		CPL				
	USL		CPU	0.895	0.766	1.0	22
							Sigma
2 4		Portion	Perc	cent	PPM	Quality	
		Below LSL					
3igina - 0.43720			Above USL	0.3	641 364	1.2009	4.184
			Total Outside	0.3	641 364	1.2009	4.184

There will be an estimated 3641 ppm of probe damage if the current parameter will not be changed to 2 - 4 mils from 3 to 5 mils

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0 1 5 SW Test Workshop

Phase 5 (Control Phase)

 Prior implementation, Change underwent to management approval. All potential risk related to change in parameter has been discussed and

conside

Noodlo Typo	Current	Proposed				
Needle Type	Overtravel Settings	Overtravel Settings				
Epoxy	2 - 4 mils	2 - 4 mile				
Blade	3 - 5 mils	2 • 4 11115				

rations.

Pros

- 1. Standardization -Less chance of errors on the part of operators
- 2. BPO Capability Improvement -Better capability BPO capability at 4mils compared to 5mils Over Travel
- 3. Quality

-Less chance for PND defect occurrence

Cons

-None

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

• Phase 5 (Control Phase)

#	Probedate	lot	Device	Average Yield	Historical Yield	4	t-Test	Statistically	With PND
	,t		- Centre	(Sample Mean) 🖆	(Population Mean) 🗠		(p-value)	the same	
1	12/28/2011 14:39	PORH1152760	WT6L2950-3300B.02	98.75	98.96	0.05	0.54	Yes	None
2	1/19/2012 7:37	P0RH1203860	WT6NCV4949A00S.02	99.54	99.58	0.05	0.49	Yes	None
3	1/19/2012 22:43	P0RH1203960	WT6NCV4949A00S.02	99.38	99.58	0.05	0.74	Yes	None
4	1/20/2012 12:03	P0RH1203760	WT6NCV4949A00S.02	99.31	99.58	0.05	0.76	Yes	None
5	1/21/2012 1:47	P0RH1204060	WT6NCV4949A00S.02	99.64	99.58	0.05	0.43	Yes	None
6	1/21/2012 12:48	P0RH1204360	WT6N CV4949A 00S.02	99.39	99.58	0.05	0.12	Yes	None
7	1/22/2012 0:52	P0RH1204260	WT6NCV4949A00S.02	99.72	99.58	0.05	0.06	Yes	None
8	1/22/2012 9:59	P0RH1257260	WT6N CV4949A 00S.02	99.76	99.58	0.05	0.06	Yes	None
9	1/22/2012 19:30	P0RH1234260	WT6NCV4949A00S.02	99.70	99.58	0.05	0.07	Yes	None
10	1/24/2012 8:34	P0RH1234160	WT6NCV4949A00S.02	99.73	99.58	0.05	0.30	Yes	None
11	2/11/2012 0:40	P0RH1350060	WT6NCP306301H.01	99.13	99.13	0.05	0.12	Yes	None
12	2/11/2012 13:35	P0RH1350260	WT6NCP306301H.01	99.26	99.13	0.05	0.06	Yes	None
13	2/16/2012 2:35	P0RH1350160	WT6NCP306301H.01	99.14	99.13	0.05	0.06	Yes	None
14	2/17/2012 18:10	P0RH1388660	WT6NCP306301H.01	99.33	99.13	0.05	0.24	Yes	None
15	2/18/2012 0:41	P9RH1403760	WT6LM293A00N.02	99.98	99.89	0.05	0.55	Yes	None
16	2/18/2012 7:14	P9RH1403860	WT6LM293A00N.02	99.98	99.89	0.05	0.20	Yes	None
17	3/10/2012 9:58	P9RH1471460	WT6MC33274A00N.02	99.84	99.8	0.05	0.66	Yes	None
18	3/10/2012 20:58	P9RH1482760	WT6MC3307800N.01	99.84	99.91	0.05	0.93	Yes	None
19	3/11/2012 3:38	P9RH1482860	WT6MC3307800N.01	99.82	99.91	0.05	0.40	Yes	None
20	3/11/2012 10:54	P9RH1483460	WT6MC3307800N.01	99.95	99.91	0.05	0.48	Yes	None
21	3/11/2012 19:04	P9RH1483060	WT6MC3307800N.01	99.93	99.91	0.05	0.47	Yes	None
22	3/12/2012 0:36	P9RH1482660	WT6MC3307800N.01	99.95	99.91	0.05	0.58	Yes	None
23	3/12/2012 10:00	P9RH1499560	WT6MC3307800N.01	99.96	99.91	0.05	0.52	Yes	None
24	3/12/2012 16:49	P9RH1483160	WT6MC3307800N.01	99.88	99.91	0.05	0.31	Yes	None
25	3/13/2012 9:50	P9RH1482960	WT6MC3307800N.01	99.86	99.91	0.05	0.27	Yes	None
26	3/13/2012 16:45	P9RH1482560	WT6MC3307800N.01	99.91	99.91	0.05	0.20	Yes	None
27	3/18/2012 2:21	P9RH1513360	WT6MC3303300N.02	98.98	99.04	0.05	0.71	Yes	None
28	3/18/2012 20:08	P9RH1513460	WT6MC3303300N.02	98.63	98.76	0.05	0.17	Yes	None
29	3/23/2012 12:37	P9RH1528260	WT6LM124SH25Z.02	99.89	99.92	0.05	0.55	Yes	None
30	3/23/2012 18:59	P9RH1533860	WT6VLM124A00N.01	99.88	99.67	0.05	0.16	Yes	None
		1 7	10 2015	20111 MILLION & MONR	CIAC Teach 14	[]			

Wiljelm Carl K

2-0-1

SW Test W

Summary/Conclusion

The principal findings of the study were:

• We can therefore conclude that the Capability Limitation of Prober E using blade type needle cause Probe Damage. Most of the trim pad has less than 4 mils pad opening and process only have the 4.5 capability.

Follow-On Work

For new product development, Wafer Probe Equipment capability in terms of placement and stepping accuracy should be consider primarily. Current trend of technology causes the Die Size shrunk. BPO becomes smaller and smaller.

Probe Technology should also be considered. A wide spread variety of Probe Technology such as Cantilever, Buckling Type, Cobra and Pogo can be chosen depending on the current process requirement and what the customer needs.

MPCPS should be done on every New Product/Process. This is an anticipation of risk that prevents the issue during the Production Run that cost a lot. Solving the problem at the source is much cheaper.

HOOKE'S LAW EXISTENCE ON BLADE TYPE NEEDLE AT PROBE PROCESS

June 7-10, 2015 2-0-1-5 SW Test Workshop

- Introduction / Background
- Objectives / Goals
- Methods / Materials / Procedures
- Results / Relevant Findings / Key Data
- Discussion of Results / Strengths / Weaknesses, etc.
- Summary / Conclusion
- Follow-On Work

At 1000 ppm, Probe Damage related to Probe Needle is on top of Pareto in terms of On Semiconductor Philippines wafer scrappage reason.

100% of those 1000 ppm have been contributed by the Prober E which uses a Blade Type Needle for Probing.

Wiljelm Carl K. Olalia

100% of those 1000 ppm have been contributed by the Prober E which uses a Blade Type Needle for Probing.

Wiljelm Carl K. Olalia

What is Probe Damage ?

- Is a phenomena when a part of a die specifically at the Pad Area such as Seal Ring or other metallization has been damage by the Probe Needle during Testing.
- Probe damage is the number one visual defect contributor at wafer sort process having a direct impact on yield and cycle time.

No	Defect visual aid	Remarks
1	REJECT	Probe marks touching the seal ring of the bond pad
2		Expose oxide on the bonding pad

What are the causes Probe Damage ?

• OSPI Engineering Team Brainstorm using Ishikawa Diagram for the Possible Sources of Probe Damage. Specific Factors are came from Man, Machine, Method and Material.

What are the causes Probe Damage ?

Mis-aligned needle upon building has been identified as one of the many causes of Probe Damage on wafers.

The phenomena has been explained by the users that initially build mis-aligned needle that was tweak to passed the alignment returned to its original position ^{Wiljelm Carl K} Olalia as Maringol free Curresary SW Test Workshop

What is Spring Effect or Hooke's Law?

- In mechanics, and physics, Hooke's law of elasticity is an approximation that states that the extension of a spring is in direct proportion with the load applied to it unless the load does not exceed the material's elastic limit.
- Materials for which Hooke's law is a useful approximation are known as linear-elastic or "Hookean" mat Mathematically, Hooke's law states that str
 F=-kx where

x is the <u>displacement</u> of the spring's end from its <u>equilibrium</u> position (a distance, in <u>SI</u> units: meters);

F is the restoring force exerted by the spring on that end (in SI units: N or kg·m·s⁻²); and k is a constant called the *rate* or *spring constant* (in SI units: N·m⁻¹ or kg·s⁻²).

Hooke's Law Application on Materials:

- Objects that quickly regain their original shape after being deformed by a force, with the molecules or atoms of their material returning to the initial state of stable equilibrium
- We may view a rod of any elastic material as a linear spring. The rod has length L and cross-sectional area A. Its extension (strain) is linearly proportional to its tensile stress $\sigma = E\varepsilon$ stant factor, the inverse of its modu $\Delta L = \frac{F}{EA}L = \frac{\sigma}{E}L$; icity, E, hence,

 Steel exhibits linear-elastic behavior in most engineering applications; Hooke's law is valid for it throughout its elastic range (i.e., for stresses below
 Wiljelrthe Kydeild strength) June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Hooke's Law Application on Probe Needle:

- Probe Needle made-up of Tungsten due to conductivity for electrical testing of wafers.
- Existence of Hooke's Law on Blade Needle happened when a mis-aligned needle was tweak prior or during Probing.
- Blade Type needle used is Tungsten which tend to return to it's original position after several time (touchdown count) during Probing.
- Needle tweaking is the centering of the needle with respect to pad. This is performed when a probemarks generated by Needle is already on marginal position on Bond pad. This marginal position will eventually become mis-align on bond pad causing Probe Needle Damage on dice

Wiljelm Carl K. Olalia

Hooke's Law Application on Probe Needle:

Offset probe marks on bond pad due to mis-aligned Probe needle.

Wiljelm Carl K. Olalia

Hooke's Law Application on Probe Needle:

Needle position prior tweaking

Probemark position prior tweaking

Needle position after tweaking

Probemark position after tweaking

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

Hooke's Law Application on Probe Needle:

To summarize, Hooke's Law or spring-effect on Blade Needle only exist if there is a tweaking involved because displacement (x) is zero when no tweaking involved..

Wiljelm Carl K. Olalia

Objective/Goals

To validate the existence of Spring-Effect on Blade Type Needle only

To determine the risk and formulate a corrective action in a form of recomendation.

The study only focus on Spring-Effect as one of the causes of Probe Damage on Wafer. This only apply to Probe that uses Blade Type Needle.

0

• Materials involve on the Study

June 7-10, 2015 2-0-1-5 SW Test Workshop

e

• Experiment Condition

- 1. Experiment has been run as normal Probe Process without engineering intervention.
- 2.All Probe parameters remains constant throughout the experiment.
- 3. Prober that was used during the experiment is Al condition
- 4. Probe-card needle tweak is newly build while the non-tweak is not.
- 5. The experiment only cover 5 wafers for the data gathering. That involved sampling and randomization.

e

• Experiment Design

ON	Design of Experiment (DOE) PLAN Validation									
Problem Statement										
At 1000 ppm, Probe Damage related to Probe Needle is on top of Pareto in terms of On Semiconductor Philippines wafer scrappage reason. Spring-Effect of Needle has been considered as one of he many causes.										
<u>Objective</u> To Validate the Exi	Objective To Validate the Existence of Spring Effect on Blade Type Needle									
Variables Under Study										
Dependent Variable(s) (Response)	Data Modelling Type	Number of Replicates	Specification	Unit of Measurement						
Probemark placement	Continuos	34 Readings	n/a	mils						
Independent Variable(s (Factor)	ndependent Variable(s) (Factor) Data Modelling Type Number of Levels Levels Unit of Measurement									
Needle Condition	Categorical	2	Tweak/Non-Tweak	N/A						
Experimental Design/Model										

CRD (Completely Randomized Design)

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

• DOE Result (Normality Test)

- Displacement of Non-Tweak Needle is characterized by a Normal Distribution

Displacement of Tweak Needle is characterized by a Binomial Not Tweak Fitted Normal Quantiles ⊿ Moments 100.0% maximum 2.61642 Mean 2.3452807 Parameter Estimates 99.5% 2.61642 Std Dev 0.1356711 Type Parameter Estimate Lower 95% Upper 95% 97.5% 2.61642 Std Err Mean 0.02477 Location u 2.3452807 2.2946203 2.3959411 90.0% 2.5352 Upper 95% Mean 2.3959411 Dispersion o 0.1356711 0.1080494 0.1823847 75.0% guartile 2.46185 Lower 95% Mean 2.2946203 -2log(Likelihood) = -35.7149895421947 50.0% median 2.33 N 30 Goodness-of-Fit Test 25.0% quartile 2.24744 2.18972 21 22 23 24 25 26 27 10.0% Shaniro-Wilk W Test 2.5% 2.07952 w Prob<W

Normal(2.34528,0.13567) 0.0% minimum 2.07952

0.5%

2.07952

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

0.9032

0.983223

(T	vean													
	1			⊿Quan	tiles		⊿ Moments		⊿.	Fitted No	ormal 2 Mix	xture		
-	- <	>		100.0%	maximum	2.54848	Mean	1.8037074	4	Paramete	er Estimate			
	/ >	,		99.5%		2.54848	Std Dev	0.5030462	(Туре	Parameter	Estimate	Lower 95%	Upper 95%
		/		97.5%		2.54848	Std Err Mean	0.0816049		Location	μ1	1.3584311	1.2900658	1.4267965
	4 \			75.0%	quartile	2.33325	Lower 95% Mean	1.6383602		Location	μ2	2.298542	2.233462	2.363622
				50.0%	median	1.70146	N	38		Dispersion	σ1	0.1560005	0.1054795	0.2307193
/				25.0%	quartile	1.31441				Probability	02 π1	0.1408073	0.3058286	0.2130210
1	1.5	2	2.5	10.0%		1.18685			L.	Probability	π2	0.4736284	0.272241	0.6839779
				2.5%		1.09135				2log(Likelih	ood) = 21.522	20200784518	3	
— N	ormal 2 Mixtu	ire		0.0%	minimum	1.09135								

Wiljelm Carl K. Olalia

• DOE Result (Equality of Variance Test)

- Using Bartlett Test showing a p-value of less than $\alpha = 0.05$, Variances (placement consistency) are significantly different. Displacement consistency of Not-Tweak is better.

Wiljelm Carl K. Olalia

• DOE Result (Non-Parametric Test)

- Using Wilcoxon Test showing a p-value of less than $\alpha = 0.05$, overall means and variance of displacement are significantly different, Non-Tweak displacement readings and consistency are

better.

Wiljelm Carl K. Olalia

• Probe-mark Displacement Stability of Non-Tweak

- Result of Non-Tweak Needle using Control Chart to monitor the Probe mark placement (displacement) of non-tweak needle with respect to touchdown count (time), practically there is stability on alignment since no out of control condition found.

Wiljelm Carl K. Olalia

• Probe-mark Displacement Stability of Tweak

- Result of Tweak needle using Control Chart to monitor the Probe mark placement (displacement) of tweak needle with respect to touchdown count (time), practically needle alignment is unstable on tweak needle since there are out of control conditions found. There is a data above the UCL, data below LCL, and 7 consecutive data above and below avg. data. There

Wiljelm Carl K. Olalia

June 7-10, 2015 2-0-1-5 SW Test Workshop

- Probe-mark Displacement Images
 - Illustration how tweak needle move back to its original alignment.

Non-Tweak Needle Probemarks Placement

• Risk Assessment

- If the Spring-Effect has not been eliminated, there is an estimated Probe Damage occurrence of

246ppm Parameter Estimates Estimate Lower 95% Type Parameter Upper 95% Scale a 1.9933096 1.8304632 2.1608989 Shape ß 4.1676422 3.1731721 5.3338218 -2log(Likelihood) = 53.509610219902 Capability Analysis Specification Value Portion % Actual Lower Spec Limit Below LSL Spec Target Above USL 0.0000 Upper Spec Limit 3.312846 Total Outside 0.0000 ⊿ Quantile Sigma Capability Index CP CPK 1.135 CPM 0.135% 50% 99.865% CPL CPU 1.135 USL Sigma 2 3 0 Portion Percent PPM Quality Below LSL Above USL 0.0247 246.5564 4.984 Total Outside 0.0247 246.5564 4.984

25TH ANNIVERSARY

SW Test Workshop

June 7-10, 2015

Wiljelm Carl K. Olalia

64

• Discussion of Result

- Spring Effect only exist at Blade Type needle when there is a needle tweaking happened.
- Needle tweaking perform to adjust misaligned needle during initial build when if was set-up for the 1st time at Prober.
- Blade Type needle is manually build and soldered by the PC personnel. Dummy wafers and old Wentworth jig is the only assurance use by PC personnel for good alignment. Chances of misaligned needle at initial build is high

Summary/Conclusion

The principal findings of the study were:

- There is stability on needle alignment of non-tweak needle. There will be no misalignment of needle that will cause a Probe Needle Damage during the process.
- On the other hand, There is un-stability on needle alignment of tweak needle. The process condition has a high risk of needle mis-alignment that will cause Probe Needle Damage on Dice. There is a high possibility that needle will return to its original alignment when reach that certain number of Touchdown. Significant difference on variation of the 2 needle condition will also support the findings above.
- We can therefore conclude that indeed Hooke's Law on blade type needle exists. Existence of Hooke's Law (spring-effect) on needle is the major factor why WiljeProbe Damage occurrence, scrapping are came from June 7-10, 2015 2015 SW Test Workshop 66 wafers processed using blade type needle.

Follow-On Work

- Probe Shop need to improve the accuracy and precision of Needle Building for Blade Type.
- There will be no needle tweaking if the Probe-mark generated by the newly build needle are preferable landed at the center of the pad.
- Probe planarity and angular rotation of ring insert need to be precise to eliminate the variation of needle alignment between Prober and Probe Needle.