Verification of HBM through Direct Probing on MicroBumps

Marc Loranger
FormFactor

Sung Wook Moon
SK hynix

June 5-8, 2016
Outline

• HBM market
• HBM test flow
• Device structure overview
• Key test challenges addressed
 – Signal delivery and simulation results
 – Direct on MicroBump probing results
• Summary
High Bandwidth Memory (HBM)

• **Market requirement**
 – Increase data bandwidth well above current GDDR5 technology
 – Decrease power per GB/s of bandwidth
 – Smaller size
 • Improve power distribution
 • Signal transmission

• **Long term roadmaps**
 – Expand into server applications and high performance computing when reliability is proven
High Bandwidth Memory (HBM)

- **Stacked Memory on Logic Architecture**
 - 2, 4 to 8 die stacked on a Logic Die
 - TSVs are typically employed to stack the memories
 - HBM stack is then mounted on a 2.5D interposer with a processing element
- 1st key application is high performance graphics
Typical HBM Test and Assembly Flow

- Presentation focuses on this Test insertion

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
HBM 2 Direct Probe on Micro Bumps Requirement

- **Array size**
 - 6022µm x 2832µm

- **Test requirement**
 - 2.133 Gb/s Functional test of the stack
 - All 8 device channels

- **HBM Array Structure**
 - Total TSV Micro Bumps: 3990
 - 55µm Micro Bump Pitch
 - Total IO Micro Bumps: 1728
 - Direct access micro bumps: 176
 - Total Power Supplies: 3 – 1056
 - Total ground Micro Bumps: 1030

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
HBM MicroBump Test Challenges

• **Electrical**
 – Number of signals
 • 8 Channel device with ~220 1GHz signals per channel
 • Objective is to test all channels at full application test rate of 2Gbps
 – Key issues to address
 • Signal fidelity from ATE to DUT
 • Signal fidelity of DUT generated signal at the ATE input
 • Cross talk due to small pitch of MicroBumps and contactor space transformer design

• **Mechanical**
 – Probe impact on the MicroBumps due to at temperature testing with long test times
Simulation Test Cell Overview

• **Contactor is FormFactor Apollo MF-40**
 – ~4000 springs
 – 55µm spring pitch
 – HBM bump pitch

• **ATE configuration**
 – UltraFLEX KGS High Speed Memory Stack tester

• **Device handler**
 – Testing can be done pre singulation of the Stack on a prober or post singulation using a die level handler
Signal Fidelity Simulations

- **Conditions**
 - 90pS ATE driver rise time (1V swing 20% to 80%)
 - 1.2V swing used
 - Driver pre-emphasis enabled to optimize signal performance at the DUT

- **Model description**
 - 3 adjacent signals in the space transformer were extracted using Cadence Sigrity SI tool from the space transformer design files
 - Selected longest space transformer signals from the MicroBumps to the PCB
 - Worst case signal path and cross talk environment
 - PCB model used known correlated models for high speed design

- **Simulations**
 - Clock – with cross talk to signals on both sides of the clock
 - Eye diagram
Simulation Model Diagram

- **Signals of Channel F selected for model**
 - Longest signals in Space transformer (ST)
 - Includes region that is *not impedance controlled* as signals escape through the power region
ATE to DUT

Clock waveform

- Low attenuation of the signal due to the probe card
- Cross talk coupling ~90mV (m5-m3)
ATE driver to DUT
PRBS 9 – Eye diagram

Single Signals on Center trace

Eye Diagram with induced cross talk
Signals on Center trace displayed
PRBS – 9 signal on 2 adjacent traces
90 degrees out of phase

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
DUT generated signal at the ATE input

• **Key issue**
 – Original concern was that the HBM drivers would not be able to drive the transmission line to the tester

• **Models**
 – SK hynix IBIS models of the HBM2 drivers were used in the simulation model
 – DUT Voh = 1.2V
 – 4 of the device selectable drive strengths were simulated to determine which would be most viable from a signal fidelity perspective
 • 6mA, 9mA, 12mA and 15mA
IBIS Drive Strength Overview

• Eye diagrams observed at probe card ATE connection

• Optimum drive strength is either 9mA or 12mA
 – 12mA used for the subsequent simulations
DUT 12mA IBIS driver to ATE
PRBS 9 – Eye diagram

No ATE load

DUT (IBIS 12mA) to ATE
2.0Gb/s PRBS9

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>1.62</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>12</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>2000</td>
</tr>
<tr>
<td>Symbol Rate (Gbps)</td>
<td>2</td>
</tr>
<tr>
<td>Eye Height (mV)</td>
<td>676.0</td>
</tr>
<tr>
<td>Eye Width (ps)</td>
<td>450.0</td>
</tr>
<tr>
<td>Rise Time (ps)</td>
<td>157.3</td>
</tr>
<tr>
<td>Fall Time (ps)</td>
<td>174.3</td>
</tr>
</tbody>
</table>

Marc Loranger
SW Moon
DUT 12mA IBIS driver to ATE
Clock and Cross talk

Single Signals on Center trace

Induced cross talk signal on Center trace with clock on 2 adjacent traces

- Cross talk on victims ~150mV (m2-m1 and M14-m13)
MicroBump Probing

• Challenges – Assembly Yield Impact
 – MicroBump damage due to probing on the MicroBumps
 – MicroBump damage due to at temperature testing
 – MicroBump damage from long duration test at temp

• Evaluations
 – MicroBump “coining” vs. Over travel vs. temperature vs. Test time
 - Coining round bump damage due to flat tip probe contact
MF40 Flat tip scrub mark vs. Over Travel on MicroBumps

- 25°C short duration
- MicroBump Measured diameter 33.5µm

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
MicroBump Damage Experiment matrix and results

<table>
<thead>
<tr>
<th>Over Travel</th>
<th>Room Temp</th>
<th>90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 Min</td>
<td>0.1 Min</td>
</tr>
<tr>
<td></td>
<td>10 Min</td>
<td>10 Min</td>
</tr>
<tr>
<td></td>
<td>60 Min</td>
<td>60 Min</td>
</tr>
<tr>
<td>60µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4µm</td>
<td>14.6µm</td>
</tr>
<tr>
<td></td>
<td>12.4µm</td>
<td>23.5µm</td>
</tr>
<tr>
<td></td>
<td>15.1µm</td>
<td>24.1µm</td>
</tr>
<tr>
<td>80µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4µm</td>
<td>13.5µm</td>
</tr>
<tr>
<td></td>
<td>13.1µm</td>
<td>23.2µm</td>
</tr>
<tr>
<td></td>
<td>15.8µm</td>
<td>25.2µm</td>
</tr>
</tbody>
</table>

- Increasing temperature will increase amount of “coining”
- 50mA of DC current flow does not affect the size of the “coining” on the top of the MicroBump
Post Touch Down MicroBump Photos

- **TD Duration**
 - 6 Sec
 - 600 sec
 - 1 Hour

- **Room temp**
 - 90°C

- **90°C**
 - 60µm OT
 - 6.4µm
 - 12.4µm
 - 15.1µm
 - 80µm OT
 - 8.4µm
 - 13.1µm
 - 15.8µm

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
Direct on MicroBump Probing

Summary

• **Electrical Test – Signals paths**

 – Simulation models of the DUT and of the Space Transformer show testing can be done at the device specified operating rate of 2Gb/s on the full 8 channels of the HBM Stack

• **MicroBump Probing**

 – Using fine pitch FormFactor MF-40 probes at the 55µm HBM bump pitch shows increasing MicroBump coining when probing at 90°C for > 10 min

• **Future work**

 – Evaluation of MicroBump probing on singulated stacks
We thank the following for providing support to the development of this material

Kelvin Ching
Clarence Gapay
Uyen Nguyen
Doug Ondricek
Todd Swart