

SW Test Workshop Semiconductor Wafer Test Workshop

Automated Testing of Bare Die-to-Die Stacks

Erik Jan Marinissen Bart De Wachter Teng Wang imec

Jens Fiedler Jörg Kiesewetter Karsten Stoll

Dan Rishavy (Presented By) Cascade Microtech

June 5-8, 2016

Presentation Outline

1. Introduction

- 2. Experimental Set-Up
 - Test Equipment
 - Misalignment Correction Algorithm
 - Test Algorithm
 - Stacked Test Chips
 - Types of Carriers
 - Automatic Re-Align in Action
- 3. Experimental Results
 - Results on Dicing Tape on Tape Frames for Ø100mm Wafers
 - Results on Sheets of Single-Sided Thermal-Release Tape
 - Results on Double-Sided Thermal-Release Tape of Ø300mm Carrier Wafers
- 4. Conclusion

2

Options for Post-Bond D2D Stack Testing

1. Per-Stack Placement on Prober

- Risk of falling out of waffle pack
- Risk of loosing stack tracking
- Manual lifting, placement on chuck
- Per-stack probe-to-pad alignment
- Requires engineering presence
- Bottle-neck in test throughput
- 2. Stacks in Bare-Die Tray
 - Need to hold dies in tray during probing, e.g. through vacuum
 - Custom-made trays with vacuum distribution
 - Expensive, need one per die size
 - Cheaper alternative: drill holes in waffle pack
 - Requires transfer from original waffle pack into tray and vice versa – so far, manual
 - Requires per-stack probe-to-pad alignment
- © Cascade Microtech & IMEC/2016 | SWTW 2016

Concept: Pick-n-Place Array on Carrier Substrate

- Pick-n-place D2D stacks in matrix structure on wafer(-like) carrier substrate
 - Allows for
 - Loading a single substrate implies loading many D2D stacks in parallel in probe station
 - Automatic index stepping over D2D array by probe station
 - Possible reuse of substrate form factor by OSAT
 - Requires
 - Temporary bonding of D2D stacks to carrier substrate
 - Rather accurate pick-n-place (PnP) operation
 - Ability to still correct small PnP mis-alignments on probe station
 - Marking of bad dies: physical (inking) or electronic (wafer map)
- Substrate Options
 - 1. Tape on tape frame
 - 2. Tape sheets
 - 3. Carrier wafer
- 5 © Cascade Microtech & IMEC/2016 | SWTW 2016

Test Equipment – CM300 Probe Station

Specification

- Cluster configuration
 - Two probers: left/right
 - Shared MHU auto-loader
- Thermo chucks

Substrate Loading

- Via auto-loader
 - Ø300mm wafers
- Via front-side load port
 - Wafers up to Ø300mm
 - Tape frames for wafers up to Ø300mm

Location

- IMEC's 300mm fab (in-line)
- 7 © Cascade Microtech & IMEC/2016 | SWTW 2016

Misalignment Correction Algorithm

Software Functions in Velox

- ReAlign 2 H : wafer; x, y, z, and θ;
 after loading new wafer or temperature changes
- ReAlign 2 C : nth die; x, y, z;
 accuracy improvement on small pads
- AlignChip : single die; x, y, z, and θ;
 for singulated dies and positioners

Correction with AlignChip

- Use with Platen Camera: field-of-view 1.50 mm×1.10 mm
- Correction possible as long as alignment pattern is in FoV
- Constrained capability to resolve rotational misalignments
 - θ_{stack} : rotation around center of die stack (ideally to be applied)
 - θ_{chuck} : rotation around center of chuck (installed mechanism)
- Search area can be enlarged by stepping around
- Can use alternative (back-up) alignment pattern
- 8 © Cascade Microtech & IMEC/2016 | SWTW 2016

4: Create "wafer" map:

9

- Maximum number of die stacks in x and y (e.g., 7×7) 5:
- Input x,y StepNextDie index as measured in Step 1.1 6:
- 7: Define coordinate system (e.g. origin (0,0) is SW die stack)
- Define probe route (e.g., snake bottom-up) 8.

9: Load probe-card training model (or re-train probe card)

Step 2: ManualOperation

1: Place tape frame on chuck with center die on center of chuck 2: Indicate in wafer map dies stacks to-be-probed/skipped

3: Move chuck to Platen Camera

4: Move manually to (nearby) dicing street of center bottom die

5: Align2Point for first coarse alignment of tape frame

6: Move manually to Home position on center die stack

Step 3: AutomatedOperation

- 1: Perform AlignChip on center die stack
- 2: Perform DetectWaferHeight
 - % SynchronPosition is defined (by means of pattern recognition of cross % on chuck) and wafer height detection is performed on center die
- for all dies stacks do { 3:
- 4: StepNextDie % first sub-die (0,0) is base to start AlignChip
- 5: Move under Platen Camera
- 6: AlianChip
- FindFocus: invokes LabVIEW algorithm for calculation ContactHeight
- 7: 8: AlignChip % Second time, just to be sure
- 9: Move to ProbePosition % Now perfectly aligned
- 10: Set Home

}

- 11: Prepare test: datafile headers, light off, init contact counter, etc.
- 12: for all sub-dies do {
- 13: Contact; measure; Separate; write data to file
- 14: StepNextSubdie
- 15:
- $16: \}$

Rectangular "Wafer" Maps with Skip Option

- Configuration - Coordination - Coordinate - Routine - Fainth cont

Dieri Steri Sofra Derivation Definition Definition Definition Definition

10

In Step 1 (for all substrates)

- Maximum number of dies stacks in *x* and *y*
- Input *x*,*y* StepNextDie index measured in Step 1.1
- Define coordinate system (e.g., SW stack is origin)
- Define probe route (e.g., snake bottom-up)

In Step 2 (individually for each substrate)

Indicate in wafer map dies stacks to-be-probed/skipped

Types of Carriers

1. Dicing Tape on Tape Frames for Ø100mm Wafers

- Blue dicing tape manually laminated on frame
- PTCO/P D2D stacks in arrays of max. 7×7=49 stacks/frame
- In total: 372 PTCO/P stacks on 15 frames

2. Sheets of Single-Sided Thermal-Release Tape

- White tape with thick polyester backing layer
- Can serve as stand-alone carrier
- PTCO/P D2D stacks in arrays of max. 9×9=81 stacks/sheet

3. Double-Sided Thermal-Release Tape on Carrier Wafers

- Transparent tape affixed to a blank Ø300mm carrier wafer
- Allows to use the probe station's auto-loader
- PTCO/P D2D stacks in arrays of 7×7=49 stacks/wafer

Results on Dicing Tape on Tape Frame – 1/2

Tape Frames for Ø100mm Wafers

- 100mm used due to pick and place compatability
- Manual loading via front port chuck pull-out
- Reused tape frames sometimes bent: difficult for chuck's vacuum
- Tape wrinkles due to manual lamination; most of them disappeared over time

Results on Dicing Tape on Tape Frame – 2/2

Re-Align Operation Largely Successful

- Performance: ~30 seconds/stack
 - Two AlignChip invocations (Step 3.6 + 3.8)
 - Two alignment patterns per AlignChip
- **Re-Align Issues**
 - Two instances 90° rotated: _ manual mistake in PnP preparation
 - Two instances with obscured alignment patterns _ due to underfill fillet/out-bleeding

piq	1,0	Die	Wafer Map	x _c	У _с	θ _c
		Stack	Location	(µm)	(µm)	(°)
01	11	1	(0,0)	-110	59	0.065
		2	(1,0)	-203	28	-0.079
		3	(1,-1)	-86	113	0.177
0,-2	1,-2	4	(0,-1)	1	267	0.198
		5	(0,-2)	-37	55	-0.275
0,-3	1,-3	6	(1,-2)	-39	55	0.069
		7	(1,-3)	-20	91	-0.028
		8	(0,-3)	0	0	-0.155
0,-4	1,-4	9	(0,-4)	-4	91	0.138
		10	(1,-4)	8	51	-0.091
05	15	11	(1,-5)	-	-	-
		12	(0,-5)	-127	245	0.371
		13	(0,-6)	-111	184	-0.079
0,-6	1,-6	14	(1,-6)	133	6	-0.388
		Minimu	n	-203	0	-0.388
		Maximu	ım	133	267	0.371
		Average	e(abs)	67.6	95.8	0.163
		Std.dev	(abs)	62.5	82.4	0.112

© Cascade Microtech & IMEC/2016 | SWTW 2016

Results on Single-Sided TR Tape – 1/2

Sheets of Thermal-Release Tape

- Stand-alone tape sheets, no frame necessary
- No bent frames, no tape wrinkling
- Better PnP accuracy, narrower 'streets'
- Manual loading via front port

Re-Align Operation Largely Successful

- Performance: avg. 13.1 seconds/stack
 - One AlignChip invocation (Step 3.6; skipped Step 3.8)
 - Two alignment patterns
- Re-Align Learnings
 - Stacks 6+7: too large θ_{stack} , skipped in wafer map
 - Stack 45: large θ_{stack} , missed alignment for Stacks 46+47
- 18 © Cascade Microtech & IMEC/2016 | SWTW 2016

Results on Single-Sided TR Tape – 2/2

Die	Wafer Map	x _c	y c	θ _c	t _{AC}	t _{SND}	Die	Wafer Map	X _c	y c	θ,	t _{AC}	t _{SND}	Die	Wafer Map	Xc	y c	θ,	t _{AC}	t _{SND}
Stack	Location	(µm)	(µm)	(°)	(s)	(s)	Stack	Location	(µm)	(µm)	(°)	(s)	(s)	Stack	Location	(µm)	(µm)	(°)	(s)	(s)
1	(0,0)	-6.5	-57.0	-0.083	13.3	0.9	31	(5,3)	15.6	12.7	0.056	13.1	0.9	61	(6,6)	-20.6	-1.6	-0.055	12.6	0.9
2	(1,0)	-66.0	11.0	0.073	14.0	0.9	32	(4,3)	17.0	1.4	0.094	12.9	0.9	62	(7,6)	-25.6	6.3	-0.002	13.0	0.9
3	(2,0)	-15.2	-9.4	-0.070	14.2	1.0	33	(3,3)	21.4	-15.0	0.092	13.0	0.9	63	(8,6)	-31.4	14.5	0.001	12.7	1.0
4	(3,0)	-12.4	-11.2	-0.051	12.9	1.0	34	(2,3)	31.2	-22.3	-0.005	13.0	0.9	64	(8,7)	-36.6	10.5	-0.072	12.7	0.9
5	(4,0)	-20.0	8.1	-0.001	13.0	1.5	35	(1,3)	36.3	-37.1	-0.005	13.1	0.8	65	(7,7)	-32.0	5.9	-0.046	12.7	0.9
6	(5,0)	-	-	-	-	-	36	(0,3)	41.5	-44.7	0.077	12.7	1.0	66	(6,7)	-28.0	0.5	-0.012	12.7	0.9
7	(6,0)	-	-	-	-	-	37	(0,4)	29.3	-47.5	0.024	12.8	1.0	67	(5,7)	-23.0	-7.0	0.003	13.0	0.9
8	(7,0)	49.9	39.3	0.030	13.0	1.0	38	(1,4)	23.5	-37.5	0.054	13.1	1.0	68	(4,7)	-16.6	-8.6	0.022	12.7	0.9
9	(8,0)	46.5	49.7	0.045	13.1	0.9	39	(2,4)	15.5	-27.0	0.029	12.7	1.0	69	(3,7)	-8.8	-20.0	-0.005	12.8	0.9
10	(8,1)	29.5	47.2	0.030	12.9	0.9	40	(3,4)	11.0	-13.6	0.025	13.0	1.0	70	(2,7)	-4.0	-22.0	0.065	13.1	0.9
11	(7,1)	34.1	35.5	0.095	12.8	0.9	41	(4,4)	7.4	-5.8	-0.028	12.7	1.0	71	(1,7)	2.5	-32.6	0.001	12.9	0.9
12	(6,1)	42.1	25.1	0.035	13.1	0.9	42	(5,4)	1.8	6.4	-0.090	13.0	1.0	72	(0,7)	9.3	-40.6	-0.014	13.0	0.8
13	(5,1)	47.3	20.3	0.091	13.2	1.0	43	(6,4)	-0.1	24.2	0.080	13.1	1.0	73	(0,8)	1.3	-42.2	-0.024	12.8	1.0
14	(4,1)	53.4	5.9	-0.002	12.9	0.9	44	(7,4)	-4.9	47.6	0.093	12.7	1.0	74	(1,8)	-6.1	-35.8	0.003	12.7	0.9
15	(3,1)	57.8	-12.5	0.019	12.9	0.9	45	(8,4)	-105.2	1399.3	-1.771	15.3	1.0	75	(2,8)	-11.3	-25.8	0.006	12.9	0.9
16	(2,1)	63.4	-28.5	0.039	12.9	0.8	46	(8,5)	-	-	-	47.1	0.8	76	(3,8)	-15.5	-21.6	-0.029	13.0	0.9
17	(1,1)	69.9	-40.7	-0.029	13.1	1.0	47	(7,5)	-	-	-	47.2	0.8	77	(4,8)	-23.8	-17.0	-0.038	13.1	1.0
18	(0,1)	3.7	58.2	0.120	14.2	0.9	48	(6,5)	-22.3	24.9	1.748	20.9	0.9	78	(5,8)	-30.6	-8.1	0.005	13.0	1.0
19	(0,2)	13.5	49.0	-0.042	12.8	0.9	49	(5,5)	-14.8	8.4	0.004	12.7	0.9	79	(6,8)	-34.2	-2.1	-0.013	12.7	1.0
20	(1,2)	56.3	-42.7	-0.131	14.0	0.9	50	(4,5)	-13.4	-17.0	-0.085	12.7	0.9	80	(7,8)	-40.2	3.1	-0.053	12.7	1.0
21	(2,2)	52.1	-27.9	-0.003	13.1	0.9	51	(3,5)	-16.2	-14.6	-0.064	13.9	0.9	81	(8,8)	-50.6	8.5	0.045	12.9	
22	(3,2)	48.0	-15.9	0.041	13.0	1.0	52	(2,5)	2.1	-30.6	0.074	14.0	0.9							
23	(4,2)	38.4	0.7	0.070	13.1	0.9	53	(1,5)	16.1	-33.4	0.066	12.7	0.8							
24	(5,2)	34.5	15.9	0.052	13.1	0.9	54	(0,5)	14.9	-57.0	0.055	12.7	1.0							
25	(6,2)	28.3	25.6	0.012	13.0	0.9	55	(0,6)	70.1	65.1	0.137	13.9	0.9							
26	(7,2)	46.2	77.7	-0.061	14.3	0.9	56	(1,6)	63.3	48.9	-0.075	12.7	0.9							
27	(8,2)	9.3	31.6	0.071	14.0	0.9	57	(2,6)	3.2	-17.6	-0.116	13.9	0.9	Minimur	n	-66.0	-57.0	-0.131	12.6	0.8
28	(8,3)	-21.9	-36.6	0.080	14.3	0.9	58	(3,6)	-0.8	-15.2	-0.040	13.1	1.0	Maximu	im	70.1	77.7	0.137	14.3	1.5
29	(7,3)	5.5	29.2	-0.094	14.1	0.9	59	(4,6)	-6.2	-5.0	-0.026	13.0	1.0	Average	e(abs)	25.7	24.3	0.047	13.1	0.9
30	(6,3)	9.3	18.4	0.029	13.0	0.9	60	(5,6)	-15.8	-3.0	-0.003	13.1	0.9	Std.dev	(abs)	18.9	17.6	0.035	0.5	0.1

© Cascade Microtech & IMEC/2016 | SWTW 2016

Results on Double-Sided TR Tape – 1/2

- Thermal-Release Tape on Ø300mm Carrier Wafer
 - Enable loading with auto-loader

- Re-Align Operation Successful
 - Performance: avg. 5.9 seconds/stack
 - One AlignChip invocation
 - One alignment pattern
 - Long compared to StepNextDie (= 0.9 s), but a lot faster than manual alignment!

Die	Wafer Map	x _c	y _c	θ	t _{AC}	t _{SND}
Stack	Location	(µm)	(µm)	(°)	(s)	(s)
1	(0,0)	-0.2	-0.2	-0.004	5.4	2.1
2	(6,-1)	21.3	47.2	-0.035	5.6	1.1
3	(5,-1)	21.3	61.1	-0.035	5.5	0.8
4	(4,-1)	17.0	70.0	-0.045	5.6	0.9
5	(3,-1)	12.4	74.9	0.013	5.5	1.1
6	(1,-1)	-16.1	66.4	-0.062	6.5	0.9
7	(0,-1)	-19.3	64.2	0.048	5.5	1.0
8	(0,-2)	-10.0	160.1	0.040	5.5	0.9
9	(1,-2)	-5.7	160.0	0.014	5.5	0.9
10	(2,-2)	-8.8	162.7	0.012	5.5	0.8
11	(3,-2)	-4.6	167.2	-0.003	5.5	0.9
12	(4,-2)	2.9	176.2	0.036	5.7	0.9
13	(5,-2)	-1.3	177.0	0.039	5.5	0.9
14	(6,-2)	6.4	180.3	0.019	5.6	0.9
15	(6,-3)	10.4	293.2	0.060	6.7	0.8
16	(5,-3)	8.6	297.2	-0.042	5.4	0.8
17	(4,-3)	8.8	313.8	0.004	5.6	0.9
18	(3,-3)	4.6	312.3	0.022	5.4	0.8
19	(2,-3)	-0.6	310.4	-0.012	5.5	0.9
20	(1,-3)	-3.3	319.2	-0.020	5.6	0.8
21	(0,-3)	-5.5	286.4	-0.045	5.5	0.9
22	(0,-4)	-8.2	330.0	-0.043	5.5	0.9
23	(1,-4)	9.2	293.2	-0.072	6.7	0.9
24	(2,-4)	0.7	302.1	0.062	6.7	0.9
25	(3,-4)	3.2	298.1	0.014	5.5	0.8
26	(4,-4)	3.3	282.9	-0.016	5.4	0.9
27	(5,-4)	28.3	305.2	-0.064	6.7	0.8
28	(6,-4)	-0.3	229.6	0.113	6.8	0.9
29	(6,-5)	18.8	369.5	-0.071	6.8	0.9
30	(5,-5)	11.4	373.8	-0.029	5.5	0.9
31	(4,-5)	8.6	389.0	0.045	5.6	0.9
32	(3,-5)	7.0	387.8	-0.028	5.6	0.8
33	(2,-5)	-2.3	397.4	0.027	5.4	0.9
34	(1,-5)	23.6	386.3	-0.055	12.1	0.8
35	(0,-5)	16.9	378.5	0.002	5.5	
Minimur	n	-19.3	-0.2	-0.072	5.4	0.8
Maximu	ım	28.3	397.4	0.113	12.1	2.1
Average	e(abs)	9.5	240.7	0.036	5.9	0.9
Std.dev	(abs)	7.3	116.9	0.024	1.2	0.2

Comparison Experimental Results

- Dicing Tape on Tape Frame Re-align works, but...
 - Bent frames, wrinkled tape
 - Less accurate PnP
- Single-Sided TR Tape Re-align works

- Double-Sided TR Tape Re-align works
 - Carrier wafer enables auto-loader
- 22 © Cascade Microtech & IMEC/2016 | SWTW 2016

	X _c	Уc	0 _c	t _{AC} *	t _{snd}			
Minimum	-203µm	0µm	-0.388°					
Maximum	+133µm	+267µm	+0.371°		O. Oc			
Average(abs)	±68µm	±96µm	±0.163°	~305	~0.95			
Std.dev(abs)	±62µm	±82µm	±0.112°					
* Two times AlignChip, two patterns each								

	X _c	Уc	0 _c	<i>t_{AC}</i> *	t _{snd}
Minimum	-66.0µm	-57.0µm	-0.131°	12.6s	0.8s
Maximum	+70.1µm	+77.7µm	+0.137°	14.3s	1.5s
Average(abs)	±25.7µm	±24.3µm	±0.047°	13.1s	0.9s
Std.dev(abs)	±18.9µm	±17.6µm	±0.035°	0.5s	0.1s

* One time AlignChip, two patterns each

	x _c	Уc	O _c	<i>t_{AC}</i> *	t _{snd}
Minimum	-19.3µm	-0.2µm	-0.072°	5.4s	0.8s
Maximum	+28.3µm	+397.4µm	+0.113°	12.1s	2.1s
Average(abs)	±9.5µm	±240.7µm	±0.036°	5.9s	0.9s
Std.dev(abs)	±7.3µm	±116.9µm	±0.024°	1.2s	0.2s

* One time AlignChip, one pattern

Summary

- Demonstrated feasibility of automated index stepping and re-align on arrays of pick-n-placed bare D2D stacks on substrate carriers
 - 1. Blue dicing tape on tape frames (for Ø100mm wafers)
 - 2. Sheets of white single-sided thermal-release tape
 - 3. Sheets of transparent double-sided thermal-release tape on Ø300mm wafers
- AlignChip of CM300's Velox
 - Features: back-up alignment patterns; stepping to increase search area
 - One invocation for one alignment pattern is mostly sufficient
 - Execution time: AlignChip = 5.9s; StepNextDie = 0.9s; test time = XX s
- Upside potential with exceeded θ_{stack}
 - $\theta_{stack} \ge 1.7^{\circ}$: AlignChip might lose its way, especially out of chuck center
 - Further improvement: AlignChip; Probe; <u>Undo AlignChip;</u> StepNextDie
- Significant test throughput improvement for IMEC
 - An option for industrial small/medium-volume production testing

