Automated Testing of Bare Die-to-Die Stacks

Erik Jan Marinissen
Bart De Wachter
Teng Wang
imec

Jens Fiedler
Jörg Kiesewetter
Karsten Stoll
Dan Rishavy (Presented By)
Cascade Microtech

imec

June 5-8, 2016
Presentation Outline

1. Introduction
2. Experimental Set-Up
 - Test Equipment
 - Misalignment Correction Algorithm
 - Test Algorithm
 - Stacked Test Chips
 - Types of Carriers
 - Automatic Re-Align in Action
3. Experimental Results
 - Results on Dicing Tape on Tape Frames for Ø100mm Wafers
 - Results on Sheets of Single-Sided Thermal-Release Tape
 - Results on Double-Sided Thermal-Release Tape of Ø300mm Carrier Wafers
4. Conclusion
Die-to-Die (D2D) Stacking

- D2D stacking is an efficient way to generate stacks
 - Allows to
 - Stack dies of different sizes
 - Stack pass-tested dies on pass-tested dies
 - Often utilized for research test chips at IMEC
 - Small and medium quantities
- Transport of D2D stacks in waffle packs
Options for Post-Bond D2D Stack Testing

1. Per-Stack Placement on Prober
 - Risk of falling out of waffle pack
 - Risk of loosing stack tracking
 - Manual lifting, placement on chuck
 - Per-stack probe-to-pad alignment
 - Requires engineering presence
 - Bottle-neck in test throughput

2. Stacks in Bare-Die Tray
 - Need to hold dies in tray during probing, e.g. through vacuum
 - Custom-made trays with vacuum distribution
 - Expensive, need one per die size
 - Cheaper alternative: drill holes in waffle pack
 - Requires transfer from original waffle pack into tray and vice versa – so far, manual
 - Requires per-stack probe-to-pad alignment
Concept: Pick-n-Place Array on Carrier Substrate

- Pick-n-place D2D stacks in matrix structure on wafer(-like) carrier substrate
 - Allows for
 - Loading a single substrate implies loading many D2D stacks in parallel in probe station
 - Automatic index stepping over D2D array by probe station
 - Possible reuse of substrate form factor by OSAT
 - Requires
 - Temporary bonding of D2D stacks to carrier substrate
 - Rather accurate pick-n-place (PnP) operation
 - Ability to still correct small PnP mis-alignments on probe station
 - Marking of bad dies: physical (inking) or electronic (wafer map)

- Substrate Options
 1. Tape on tape frame
 2. Tape sheets
 3. Carrier wafer
Presentation Outline

1. Introduction
2. Experimental Set-Up
 - Test Equipment
 - Misalignment Correction Algorithm
 - Test Algorithm
 - Stacked Test Chips
 - Types of Carriers
 - Automatic Re-Align in Action
3. Experimental Results
 - Results on Dicing Tape on Tape Frames for Ø100mm Wafers
 - Results on Sheets of Single-Sided Thermal-Release Tape
 - Results on Double-Sided Thermal-Release Tape of Ø300mm Carrier Wafers
4. Conclusion
Test Equipment – CM300 Probe Station

Specification
- Cluster configuration
 - Two probers: left/right
 - Shared MHU auto-loader
- Thermo chucks

Substrate Loading
- Via auto-loader
 - Ø300mm wafers
- Via front-side load port
 - Wafers up to Ø300mm
 - Tape frames for wafers up to Ø300mm

Location
- IMEC’s 300mm fab (in-line)
Misalignment Correction Algorithm

Software Functions in Velox

- ReAlign 2 H: wafer; x, y, z, and θ; after loading new wafer or temperature changes
- ReAlign 2 C: nth die; x, y, z; accuracy improvement on small pads
- AlignChip: single die; x, y, z, and θ; for singulated dies and positioners

Correction with AlignChip

- Use with Platen Camera: field-of-view 1.50 mm × 1.10 mm
- Correction possible as long as alignment pattern is in FoV
- Constrained capability to resolve rotational misalignments
 - θ_stack: rotation around center of die stack (ideally to be applied)
 - θ_chuck: rotation around center of chuck (installed mechanism)
- Search area can be enlarged by stepping around
- Can use alternative (back-up) alignment pattern
Test Algorithm

Algorithm:
Step 1: SetUpProject
for all tape frames do {
 Step 2: ManualOperation
 Step 3: AutomatedOperation
}

Step 1: SetUpProject
1: Measure x,y StepNextDie index
2: Training of AlignChip plug-in: pattern recognition and Home setting
3: Training of DetectWaferHeight plug-in
4: Create “wafer” map:
 5: Maximum number of die stacks in x and y (e.g., 7×7)
6: Input x,y StepNextDie index as measured in Step 1.1
7: Define coordinate system (e.g. origin (0,0) is SW die stack)
8: Define probe route (e.g., snake bottom-up)
9: Load probe-card training model (or re-train probe card)

Step 2: ManualOperation
1: Place tape frame on chuck with center die on center of chuck
2: Indicate in wafer map dies stacks to-be-probed/skipped
3: Move chuck to Platen Camera
4: Move manually to (nearby) dicing street of center bottom die
5: Align2Point for first coarse alignment of tape frame
6: Move manually to Home position on center die stack

Step 3: AutomatedOperation
1: Perform AlignChip on center die stack
2: Perform DetectWaferHeight
 % SynchronPosition is defined (by means of pattern recognition of cross % on chuck) and wafer height detection is performed on center die
3: for all dies stacks do {
4: StepNextDie % first sub-die (0,0) is base to start AlignChip
5: Move under Platen Camera
6: AlignChip
7: FindFocus: invokes LabVIEW algorithm for calculation ContactHeight
8: AlignChip % Second time, just to be sure
9: Move to ProbePosition % Now perfectly aligned
10: Set Home
11: for all sub-dies do {
12: Contact; measure; Separate; write data to file
13: }
14: }
Rectangular “Wafer” Maps with Skip Option

In Step 1 (for all substrates)
- Maximum number of dies stacks in x and y
- Input x,y StepNextDie index measured in Step 1.1
- Define coordinate system (e.g., SW stack is origin)
- Define probe route (e.g., snake bottom-up)

In Step 2 (individually for each substrate)
- Indicate in wafer map dies stacks to-be-probed/skipped
Stacked Test Chips

- Two-die test-chip stacks
 - PTCO: 5.2×5.2mm²
 - PTCP: 10.2×10.2mm²

- Post-bond testing on bare PTCO/P stacks
 - Probing on multiple probe-pad modules
 - All probe-pad modules are located on the front-side (= top-side) of the bottom die
 - Each probe-pad module is IMEC’s standard 2×12 module
Types of Carriers

1. Dicing Tape on Tape Frames for ø100mm Wafers
 - Blue dicing tape manually laminated on frame
 - PTCO/P D2D stacks in arrays of max. 7×7=49 stacks/frame
 - In total: 372 PTCO/P stacks on 15 frames

2. Sheets of Single-Sided Thermal-Release Tape
 - White tape with thick polyester backing layer
 - Can serve as stand-alone carrier
 - PTCO/P D2D stacks in arrays of max. 9×9=81 stacks/sheet

3. Double-Sided Thermal-Release Tape on Carrier Wafers
 - Transparent tape affixed to a blank ø300mm carrier wafer
 - Allows to use the probe station’s auto-loader
 - PTCO/P D2D stacks in arrays of 7×7=49 stacks/wafer
Automatic Re-Align in Action

Extra-long cantilever needles to compensate for stacked-die height

Validation of correct operation by checking probe mark locations

Training of alignment pattern (here: alignment cross on bottom die)

Contact view: side-view camera

Top die in stack

Probe needles left-hand

Probe needles right-hand

Top-view camera

Bottom die
Results on Double-Sided TR Tape – 2/2

Test sequence and video by Bart De Wachter
1. Introduction
2. Experimental Set-Up
 - Test Equipment
 - Misalignment Correction Algorithm
 - Test Algorithm
 - Stacked Test Chips
 - Types of Carriers
 - Automatic Re-Align in Action
3. Experimental Results
 - Results on Dicing Tape on Tape Frames for Ø100mm Wafers
 - Results on Sheets of Single-Sided Thermal-Release Tape
 - Results on Double-Sided Thermal-Release Tape of Ø300mm Carrier Wafers
4. Conclusion
Results on Dicing Tape on Tape Frame – 1/2

- **Tape Frames for Ø100mm Wafers**
 - 100mm used due to pick and place compatibility
 - Manual loading via front port chuck pull-out
 - Reused tape frames sometimes bent: difficult for chuck’s vacuum
 - Tape wrinkles due to manual lamination; most of them disappeared over time
Results on Dicing Tape on Tape Frame – 2/2

- Re-Align Operation Largely Successful
 - Performance: ~30 seconds/stack
 - Two AlignChip invocations (Step 3.6 + 3.8)
 - Two alignment patterns per AlignChip

- Re-Align Issues
 - Two instances 90° rotated: manual mistake in PnP preparation
 - Two instances with obscured alignment patterns due to underfill fillet/out-bleeding

<table>
<thead>
<tr>
<th>Die Location</th>
<th>Wafer Map Location</th>
<th>x_c (µm)</th>
<th>y_c (µm)</th>
<th>θ_c (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(-110, 59)</td>
<td>-110</td>
<td>59</td>
<td>0.065</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(-203, 28)</td>
<td>-203</td>
<td>28</td>
<td>-0.079</td>
</tr>
<tr>
<td>(1,-1)</td>
<td>(-86, 113)</td>
<td>-86</td>
<td>113</td>
<td>0.177</td>
</tr>
<tr>
<td>(0,-1)</td>
<td>(1, 267)</td>
<td>1</td>
<td>267</td>
<td>0.198</td>
</tr>
<tr>
<td>(0,-2)</td>
<td>(-37, 55)</td>
<td>-37</td>
<td>55</td>
<td>-0.275</td>
</tr>
<tr>
<td>(1,-2)</td>
<td>(-39, 55)</td>
<td>-39</td>
<td>55</td>
<td>0.069</td>
</tr>
<tr>
<td>(1,-3)</td>
<td>(-20, 91)</td>
<td>-20</td>
<td>91</td>
<td>-0.028</td>
</tr>
<tr>
<td>(0,-3)</td>
<td>(0, 0)</td>
<td>0</td>
<td>0</td>
<td>-0.155</td>
</tr>
<tr>
<td>(0,-4)</td>
<td>(-4, 91)</td>
<td>-4</td>
<td>91</td>
<td>0.138</td>
</tr>
<tr>
<td>(1,-4)</td>
<td>(8, 51)</td>
<td>8</td>
<td>51</td>
<td>-0.091</td>
</tr>
<tr>
<td>(1,-5)</td>
<td>(-, -)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(0,-5)</td>
<td>(-127, 245)</td>
<td>-127</td>
<td>245</td>
<td>0.371</td>
</tr>
<tr>
<td>(0,-6)</td>
<td>(-111, 184)</td>
<td>-111</td>
<td>184</td>
<td>-0.079</td>
</tr>
<tr>
<td>(1,-6)</td>
<td>(133, 6)</td>
<td>133</td>
<td>6</td>
<td>-0.388</td>
</tr>
</tbody>
</table>

Minimum: 133 267 0.371
Maximum: -203 0 -0.388
Average(abs): 67.6 95.8 0.163
Std.dev(abs): 62.5 82.4 0.112
Results on Single-Sided TR Tape – 1/2

- Sheets of Thermal-Release Tape
 - Stand-alone tape sheets, no frame necessary
 - No bent frames, no tape wrinkling
 - Better PnP accuracy, narrower ‘streets’
 - Manual loading via front port

- Re-Align Operation Largely Successful
 - Performance: avg. 13.1 seconds/stack
 - One AlignChip invocation (Step 3.6; skipped Step 3.8)
 - Two alignment patterns

- Re-Align Learnings
 - Stacks 6+7: too large θ_{stack}, skipped in wafer map
 - Stack 45: large θ_{stack}, missed alignment for Stacks 46+47
Results on Single-Sided TR Tape – 2/2

<table>
<thead>
<tr>
<th>Stack</th>
<th>Wafer Map Location</th>
<th>x_c (µm)</th>
<th>y_c (µm)</th>
<th>θ_c (°)</th>
<th>t_{AC} (s)</th>
<th>t_{SND} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,0)</td>
<td>-6.5</td>
<td>-57.0</td>
<td>-0.083</td>
<td>13.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>(1,0)</td>
<td>-66.0</td>
<td>11.0</td>
<td>0.073</td>
<td>14.0</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>(2,0)</td>
<td>-15.2</td>
<td>-9.4</td>
<td>-0.070</td>
<td>14.2</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>(3,0)</td>
<td>-12.4</td>
<td>-11.2</td>
<td>-0.051</td>
<td>12.9</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>(4,0)</td>
<td>-20.0</td>
<td>8.1</td>
<td>-0.001</td>
<td>13.0</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>(5,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(6,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(7,0)</td>
<td>49.9</td>
<td>39.3</td>
<td>0.030</td>
<td>13.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>(8,0)</td>
<td>46.5</td>
<td>49.7</td>
<td>0.045</td>
<td>13.1</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>(9,0)</td>
<td>29.5</td>
<td>47.2</td>
<td>0.030</td>
<td>12.9</td>
<td>0.9</td>
</tr>
<tr>
<td>11</td>
<td>(10,0)</td>
<td>34.1</td>
<td>35.5</td>
<td>0.095</td>
<td>12.8</td>
<td>0.9</td>
</tr>
<tr>
<td>12</td>
<td>(11,0)</td>
<td>42.1</td>
<td>25.1</td>
<td>0.035</td>
<td>13.1</td>
<td>0.9</td>
</tr>
<tr>
<td>13</td>
<td>(12,0)</td>
<td>47.3</td>
<td>20.3</td>
<td>0.091</td>
<td>13.2</td>
<td>1.0</td>
</tr>
<tr>
<td>14</td>
<td>(13,0)</td>
<td>53.4</td>
<td>5.9</td>
<td>-0.002</td>
<td>12.9</td>
<td>0.9</td>
</tr>
<tr>
<td>15</td>
<td>(14,0)</td>
<td>57.8</td>
<td>-12.5</td>
<td>0.019</td>
<td>12.9</td>
<td>0.9</td>
</tr>
<tr>
<td>16</td>
<td>(15,0)</td>
<td>63.4</td>
<td>-28.5</td>
<td>0.039</td>
<td>12.9</td>
<td>0.8</td>
</tr>
<tr>
<td>17</td>
<td>(16,0)</td>
<td>69.9</td>
<td>-40.7</td>
<td>-0.029</td>
<td>13.1</td>
<td>1.0</td>
</tr>
<tr>
<td>18</td>
<td>(17,0)</td>
<td>3.7</td>
<td>58.2</td>
<td>0.120</td>
<td>14.2</td>
<td>0.9</td>
</tr>
<tr>
<td>19</td>
<td>(18,0)</td>
<td>13.5</td>
<td>49.0</td>
<td>-0.042</td>
<td>12.8</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>(19,0)</td>
<td>56.3</td>
<td>-42.7</td>
<td>-0.131</td>
<td>14.0</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>(20,0)</td>
<td>52.1</td>
<td>-27.9</td>
<td>-0.003</td>
<td>13.1</td>
<td>0.9</td>
</tr>
<tr>
<td>22</td>
<td>(21,0)</td>
<td>48.0</td>
<td>-15.9</td>
<td>0.041</td>
<td>13.0</td>
<td>1.0</td>
</tr>
<tr>
<td>23</td>
<td>(22,0)</td>
<td>38.4</td>
<td>0.7</td>
<td>0.070</td>
<td>13.1</td>
<td>0.9</td>
</tr>
<tr>
<td>24</td>
<td>(23,0)</td>
<td>34.5</td>
<td>15.9</td>
<td>0.052</td>
<td>13.1</td>
<td>0.9</td>
</tr>
<tr>
<td>25</td>
<td>(24,0)</td>
<td>28.3</td>
<td>25.6</td>
<td>0.012</td>
<td>13.0</td>
<td>0.9</td>
</tr>
<tr>
<td>26</td>
<td>(25,0)</td>
<td>46.2</td>
<td>77.7</td>
<td>-0.061</td>
<td>14.3</td>
<td>0.9</td>
</tr>
<tr>
<td>27</td>
<td>(26,0)</td>
<td>9.3</td>
<td>31.6</td>
<td>0.071</td>
<td>14.0</td>
<td>0.9</td>
</tr>
<tr>
<td>28</td>
<td>(27,0)</td>
<td>-21.9</td>
<td>-36.6</td>
<td>0.080</td>
<td>14.3</td>
<td>0.9</td>
</tr>
<tr>
<td>29</td>
<td>(28,0)</td>
<td>5.5</td>
<td>29.2</td>
<td>-0.094</td>
<td>14.1</td>
<td>0.9</td>
</tr>
<tr>
<td>30</td>
<td>(29,0)</td>
<td>9.3</td>
<td>18.4</td>
<td>0.029</td>
<td>13.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Minimum
- x_c: -66.0 µm
- y_c: -57.0 µm
- θ_c: -0.131°
- t_{AC}: 12.6 s
- t_{SND}: 0.8 s

Maximum
- x_c: 70.1 µm
- y_c: 77.7 µm
- θ_c: 14.3°
- t_{AC}: 14.3 s
- t_{SND}: 1.5 s

Average (abs)
- x_c: 25.7 µm
- y_c: 24.3 µm
- θ_c: 13.1°
- t_{AC}: 13.1 s
- t_{SND}: 0.9 s

Standard Deviation (abs)
- x_c: 18.9 µm
- y_c: 17.6 µm
- θ_c: 0.5°
- t_{AC}: 0.5 s
- t_{SND}: 0.1 s
Results on Double-Sided TR Tape – 1/2

- Thermal-Release Tape on Ø300mm Carrier Wafer
 - Enable loading with auto-loader

- Re-Align Operation Successful
 - Performance: avg. 5.9 seconds/stack
 - One AlignChip invocation
 - One alignment pattern
 - Long compared to StepNextDie (= 0.9 s), but a lot faster than manual alignment!

<table>
<thead>
<tr>
<th>Die Stack Location</th>
<th>x_c (µm)</th>
<th>y_c (µm)</th>
<th>θ_c (°)</th>
<th>t_{AC} (s)</th>
<th>t_{END} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0,0)</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.004</td>
<td>5.4</td>
<td>2.1</td>
</tr>
<tr>
<td>2 (6,-1)</td>
<td>21.3</td>
<td>47.2</td>
<td>-0.035</td>
<td>5.6</td>
<td>1.1</td>
</tr>
<tr>
<td>3 (5,-1)</td>
<td>21.3</td>
<td>61.1</td>
<td>-0.035</td>
<td>5.5</td>
<td>0.8</td>
</tr>
<tr>
<td>4 (4,-1)</td>
<td>17.0</td>
<td>70.0</td>
<td>-0.045</td>
<td>5.6</td>
<td>0.9</td>
</tr>
<tr>
<td>5 (3,-1)</td>
<td>12.4</td>
<td>74.9</td>
<td>0.013</td>
<td>5.5</td>
<td>1.1</td>
</tr>
<tr>
<td>6 (1,-1)</td>
<td>-16.1</td>
<td>66.4</td>
<td>-0.062</td>
<td>6.5</td>
<td>0.9</td>
</tr>
<tr>
<td>7 (0,-1)</td>
<td>-19.3</td>
<td>64.2</td>
<td>0.048</td>
<td>5.5</td>
<td>1.0</td>
</tr>
<tr>
<td>8 (0,-2)</td>
<td>-10.0</td>
<td>160.1</td>
<td>0.040</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>9 (1,-2)</td>
<td>-5.7</td>
<td>160.0</td>
<td>0.014</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>10 (2,-2)</td>
<td>-8.8</td>
<td>162.7</td>
<td>0.012</td>
<td>5.5</td>
<td>0.8</td>
</tr>
<tr>
<td>11 (3,-2)</td>
<td>-4.6</td>
<td>167.2</td>
<td>-0.003</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>12 (4,-2)</td>
<td>2.9</td>
<td>176.2</td>
<td>0.036</td>
<td>5.7</td>
<td>0.9</td>
</tr>
<tr>
<td>13 (5,-2)</td>
<td>-1.3</td>
<td>177.0</td>
<td>0.039</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>14 (6,-2)</td>
<td>6.4</td>
<td>180.3</td>
<td>0.019</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>15 (6,-3)</td>
<td>10.4</td>
<td>293.2</td>
<td>0.060</td>
<td>6.7</td>
<td>0.8</td>
</tr>
<tr>
<td>16 (5,-3)</td>
<td>8.6</td>
<td>297.2</td>
<td>-0.042</td>
<td>5.4</td>
<td>0.8</td>
</tr>
<tr>
<td>17 (4,-3)</td>
<td>8.8</td>
<td>313.8</td>
<td>0.004</td>
<td>5.6</td>
<td>0.9</td>
</tr>
<tr>
<td>18 (3,-3)</td>
<td>4.6</td>
<td>312.3</td>
<td>0.022</td>
<td>5.4</td>
<td>0.8</td>
</tr>
<tr>
<td>19 (2,-3)</td>
<td>-0.6</td>
<td>310.4</td>
<td>-0.012</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>20 (1,-3)</td>
<td>-3.3</td>
<td>319.2</td>
<td>-0.020</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>21 (0,-3)</td>
<td>-5.5</td>
<td>286.4</td>
<td>-0.045</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>22 (0,-4)</td>
<td>-8.2</td>
<td>330.0</td>
<td>-0.043</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>23 (1,-4)</td>
<td>9.2</td>
<td>293.2</td>
<td>-0.072</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>24 (2,-4)</td>
<td>0.7</td>
<td>302.1</td>
<td>0.062</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>25 (3,-4)</td>
<td>3.2</td>
<td>298.1</td>
<td>0.014</td>
<td>5.5</td>
<td>0.8</td>
</tr>
<tr>
<td>26 (4,-4)</td>
<td>3.3</td>
<td>282.9</td>
<td>-0.016</td>
<td>5.4</td>
<td>0.9</td>
</tr>
<tr>
<td>27 (5,-4)</td>
<td>28.3</td>
<td>305.2</td>
<td>-0.064</td>
<td>6.7</td>
<td>0.8</td>
</tr>
<tr>
<td>28 (6,-4)</td>
<td>-0.3</td>
<td>229.6</td>
<td>0.113</td>
<td>6.8</td>
<td>0.9</td>
</tr>
<tr>
<td>29 (6,-5)</td>
<td>18.8</td>
<td>369.5</td>
<td>-0.071</td>
<td>6.8</td>
<td>0.9</td>
</tr>
<tr>
<td>30 (5,-5)</td>
<td>11.4</td>
<td>373.8</td>
<td>-0.029</td>
<td>5.5</td>
<td>0.9</td>
</tr>
<tr>
<td>31 (4,-5)</td>
<td>8.6</td>
<td>389.0</td>
<td>0.045</td>
<td>5.6</td>
<td>0.9</td>
</tr>
<tr>
<td>32 (3,-5)</td>
<td>7.0</td>
<td>387.8</td>
<td>-0.028</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td>33 (2,-5)</td>
<td>-2.3</td>
<td>397.4</td>
<td>0.027</td>
<td>5.4</td>
<td>0.9</td>
</tr>
<tr>
<td>34 (1,-5)</td>
<td>23.6</td>
<td>386.3</td>
<td>-0.055</td>
<td>12.1</td>
<td>0.8</td>
</tr>
<tr>
<td>35 (0,-5)</td>
<td>16.9</td>
<td>378.5</td>
<td>0.002</td>
<td>5.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Minimum -19.3 -0.2 -0.072 5.4 0.8
Maximum 28.3 397.4 0.113 12.1 2.1
Average(abs) 9.5 240.7 0.036 5.9 0.9
Std.dev(abs) 7.3 116.9 0.024 1.2 0.2
Presentation Outline

1. Introduction
2. Experimental Set-Up
 - Test Equipment
 - Misalignment Correction Algorithm
 - Test Algorithm
 - Stacked Test Chips
 - Types of Carriers
 - Automatic Re-Align in Action
3. Experimental Results
 - Results on Dicing Tape on Tape Frames for Ø100mm Wafers
 - Results on Sheets of Single-Sided Thermal-Release Tape
 - Results on Double-Sided Thermal-Release Tape of Ø300mm Carrier Wafers
4. Conclusion
Comparison Experimental Results

- **Dicing Tape on Tape Frame**
 - Re-align works, but...
 - Bent frames, wrinkled tape
 - Less accurate PnP

- **Single-Sided TR Tape**
 - Re-align works

- **Double-Sided TR Tape**
 - Re-align works
 - Carrier wafer enables auto-loader

<table>
<thead>
<tr>
<th></th>
<th>x_c</th>
<th>y_c</th>
<th>θ_c</th>
<th>t_{AC}^*</th>
<th>t_{SND}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>-203µm</td>
<td>0µm</td>
<td>-0.388°</td>
<td>~30s</td>
<td>~0.9s</td>
</tr>
<tr>
<td>Maximum</td>
<td>+133µm</td>
<td>+267µm</td>
<td>+0.371°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average(abs)</td>
<td>±68µm</td>
<td>±96µm</td>
<td>±0.163°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std.dev(abs)</td>
<td>±62µm</td>
<td>±82µm</td>
<td>±0.112°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Two times AlignChip, two patterns each

<table>
<thead>
<tr>
<th></th>
<th>x_c</th>
<th>y_c</th>
<th>θ_c</th>
<th>t_{AC}^*</th>
<th>t_{SND}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>-66.0µm</td>
<td>-57.0µm</td>
<td>-0.131°</td>
<td>12.6s</td>
<td>0.8s</td>
</tr>
<tr>
<td>Maximum</td>
<td>+70.1µm</td>
<td>+77.7µm</td>
<td>+0.137°</td>
<td>14.3s</td>
<td>1.5s</td>
</tr>
<tr>
<td>Average(abs)</td>
<td>±25.7µm</td>
<td>±24.3µm</td>
<td>±0.047°</td>
<td>13.1s</td>
<td>0.9s</td>
</tr>
<tr>
<td>Std.dev(abs)</td>
<td>±18.9µm</td>
<td>±17.6µm</td>
<td>±0.035°</td>
<td>0.5s</td>
<td>0.1s</td>
</tr>
</tbody>
</table>

* One time AlignChip, two patterns each

<table>
<thead>
<tr>
<th></th>
<th>x_c</th>
<th>y_c</th>
<th>θ_c</th>
<th>t_{AC}^*</th>
<th>t_{SND}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>-19.3µm</td>
<td>-0.2µm</td>
<td>-0.072°</td>
<td>5.4s</td>
<td>0.8s</td>
</tr>
<tr>
<td>Maximum</td>
<td>+28.3µm</td>
<td>+397.4µm</td>
<td>+0.113°</td>
<td>12.1s</td>
<td>2.1s</td>
</tr>
<tr>
<td>Average(abs)</td>
<td>±9.5µm</td>
<td>±240.7µm</td>
<td>±0.036°</td>
<td>5.9s</td>
<td>0.9s</td>
</tr>
<tr>
<td>Std.dev(abs)</td>
<td>±7.3µm</td>
<td>±116.9µm</td>
<td>±0.024°</td>
<td>1.2s</td>
<td>0.2s</td>
</tr>
</tbody>
</table>

* One time AlignChip, one pattern
Summary

- Demonstrated feasibility of automated index stepping and re-align on arrays of pick-n-placed bare D2D stacks on substrate carriers
 1. Blue dicing tape on tape frames (for Ø100mm wafers)
 2. Sheets of white single-sided thermal-release tape
 3. Sheets of transparent double-sided thermal-release tape on Ø300mm wafers

- AlignChip of CM300’s Velox
 - Features: back-up alignment patterns; stepping to increase search area
 - One invocation for one alignment pattern is mostly sufficient
 - Execution time: AlignChip = 5.9s; StepNextDie = 0.9s; test time = XX s

- Upside potential with exceeded θ_{stack}
 - $\theta_{\text{stack}} \geq 1.7^\circ$: AlignChip might lose its way, especially out of chuck center
 - Further improvement: AlignChip; Probe; \textit{Undo AlignChip}; StepNextDie

- Significant test throughput improvement for IMEC
 - An option for industrial small/medium-volume production testing
Acknowledgments

- **IMEC** *(Leuven)*
 - Gerald Beyer, Eric Beyne, Giovanni Capuz, Vladimir Cherman, Kristof Croes, Robert Daily, Jaber Derakhshandeh, Mireille Matterne, Michele Stucchi, Geert Van der Plas, Dimitrios Velenis, Tomas Webers

- **Cascade Microtech** *(Dresden / Beaverton)*
 - Mario Berg, Juliane Busch, Claus Dietrich, Gavin Fisher, Steve Harris, Ulf Hackius, Geert-Jan Hendricks, Torsten Kern

- **Nitto Denko** *(Genk / Osaka)*
 - Bart Peeters

Part of this work is performed in the project SEA4KET, Semiconductor Equipment Assessment for Key-Enabling Technologies (http://www.sea4ket.eu), sub-project 3DIMS, 3D Integrated Measurement System; this project receives funding from the European Union's Seventh Programme for research, technological development, and demonstration under grant agreement No. IST-611332.
Thank you for your attention