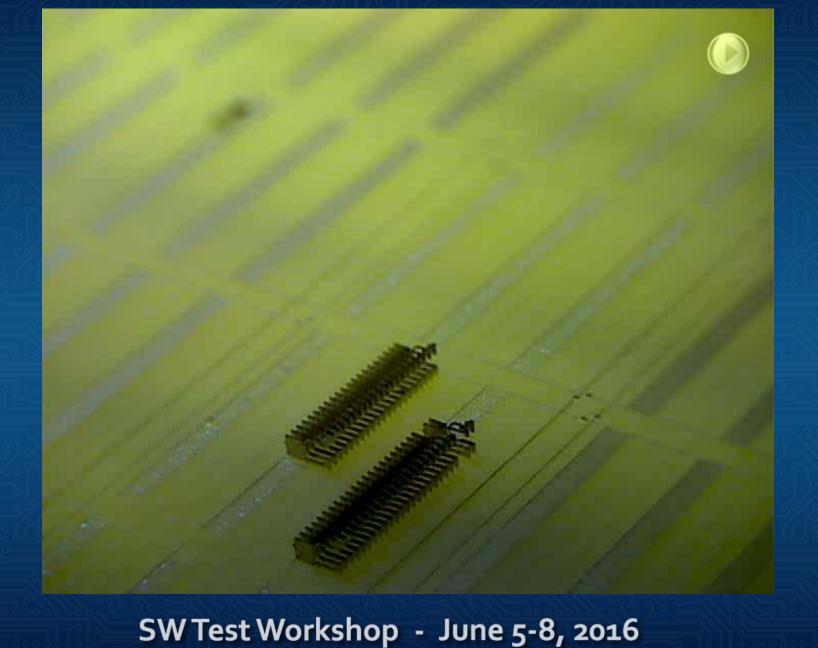


SW Test Workshop Semiconductor Wafer Test Workshop

Advanced Laser Bonding of Ultra Fine Pitch Cantilever Spring Pins for Assembly of Flash, DRAM and Logic Probe Cards

T. Teutsch, T. Oppert, A. Kolbasow


June 5-8, 2016

Overview

- Introduction
- Advantages on Laser Soldering
- Cantilever Assembly & Laser Cutting
 - Solder Balling / Solder Jetting
 - Laser Bonding of Cantilever
 - Specifications for laser Bonding Equipment
 - Design Rules
 - Vision System / Fiducial Alignment
 - Process Results / Examples

Summary

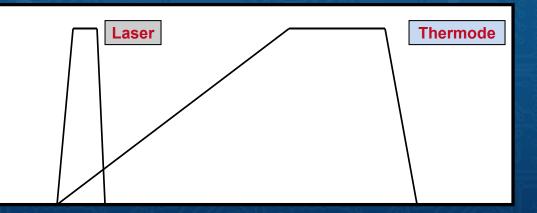
Cantilever Bonding Video

Advantage of Laser Bonding

Localized heat

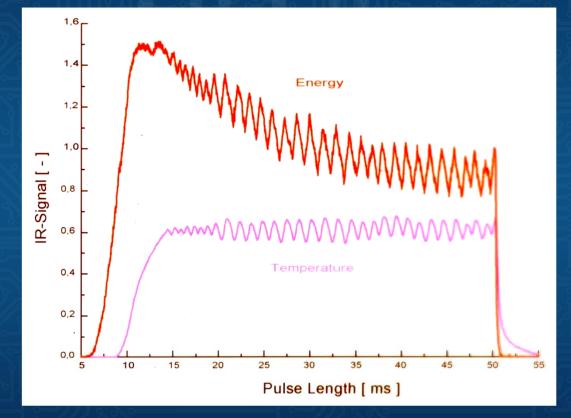
 No thermal stress on the areas outside of bonding interface

Short Laser Pulse


 \diamond

Low thermal stress on chip (cantilever) / Substrate and interconnection

Thermode Bonding vs Laser Bonding


Heating time vs bonding temperature:

◆ Laser: 0.01 - 0.2 sec => msec
 ◆ Thermode: 1 - 10 sec=> sec
 ♦ Oven Reflow: 60 - 180 sec => min

Temperature Control

In Situ Laser Energy Tuning during Laser Bonding

Substrate Materials for Laser Soldering

♦ Substrate

- FR4, BT- Epoxy, Polyimide, Ceramic, Silicon
 TG above 150 ° C
 most applications: rigid
 Pad metallization
 - Copper with NiAu, Sn, Au
 - Thin Film : Cr/Au, NiAu, Au

Advantages for Probe Card Assembly

♦ Flexibility

- Layout change by software only (no tooling)
- ♦ Parallel processing of multiple spring designs
- Independent from substrate material

Repair Capability

- ♦ Individual spring replacement
- ♦ No thermal influence on other springs

Customer Support

Close to customer site

Cantilever Assembly Process Flow

Cantilever Design

Cantilever Manufacturing (Plating)

Cantilever Singulation (Laser Cutting)

Cantilever Inspection

Cantilever Sorting (into waffle packs) if needed

Substrate Solder Bumping, (solder paste dipping of cantilever can be integrated)

Cantilever / Substrate Alignment

Cantilever Laser Bonding

Cantilever inspection (optional) SW Test Workshop - June 5-8, 2016

Cantilever Assembly Line for Probe Card

Cantilever Sorter

SB²-Jet: Solder Jetting

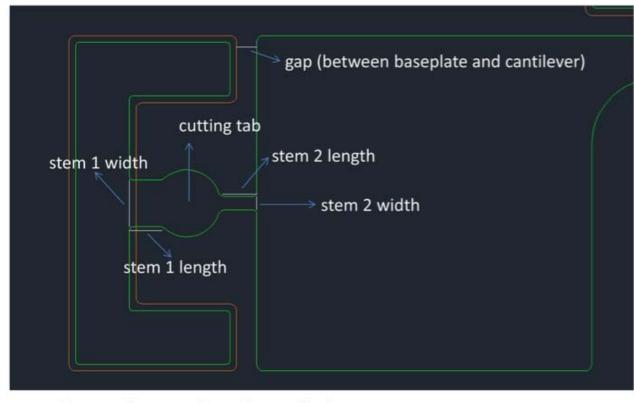
Features

Input: MEMS substrates Inspection of cantilever Laser cutting with the Laser Placement of cantilever in waffle packs

Features

Solder Jetting on ceramic substrate

Solder Balls sizes: 30 – 760 µm


Solder alloys capability: PbSn, SnAgCu or AuSn Cantilever Bonder LAPLACE-Can

Features

Cantilever supplied in waffle packs Cantilever pick & rotation in vertical position Substrate height measurement Dual camera for x, y alignment of cantilever to the substrate Probe tip z alignment Laser bonding of cantilever Post inspection Cantilever rework capability

Cantilever Cutting – Design Requirements

stem 1 – stem between baseplate and tab stem 2 – stem between tab and cantilever

Cantilever Cutting – Design Requirements

relation between stem-2-length and gap:

- stem-2-length should be about three times longer than gap

current dimensions stem-2-length: 42,72 μm gap: 30 μm

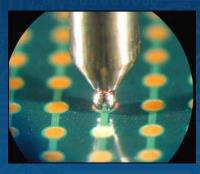
relation between width of stem 1 and stem 2

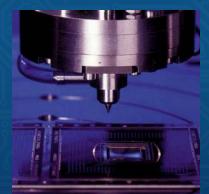
- width of stem 1 should only be two times thicker than width of stem 2

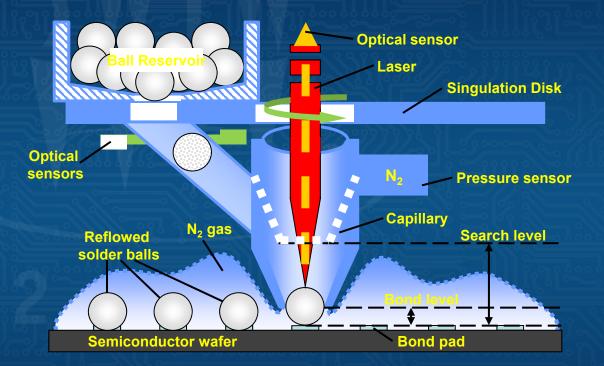
current dimensions stem 1 width: 70 μm stem 2 width: 20 μm ideal dimensions (for example) stem 1 width: 40 μm stem 2 width: 20 μm

ideal dimensions (for example)

15 µm

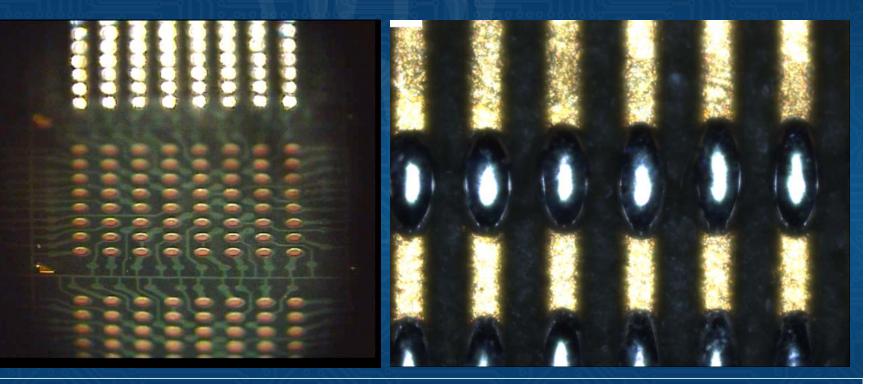

stem-2-length: 45 µm


gap:


- diameter of tab should be about 100 μm
- moreover both stems and cutting tab should not be connected to ceramic substrate

Soder Sphere Jetting

Schematic diagram of <u>Solder Ball</u> Bumping (SB²) process:



Solder Alloys: SAC, PbSn, AuSn, etc.

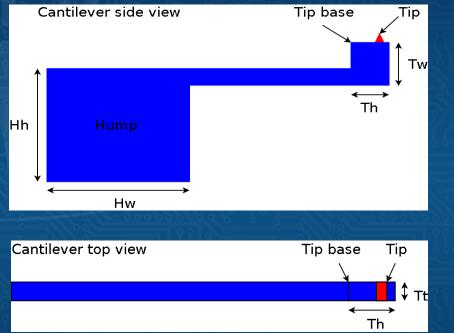
Solder Sphere Jetting

Process video for solder jetting

Solder depots placed on probe card substrate pads

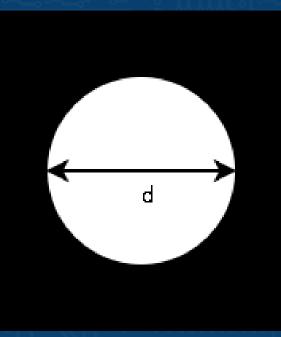
Cantilever Bonder Specification

- Linear axis or gantry system
- Probe card sizes up to 14 inch
- Alignment by precision optical system
- Tip correction (bend)
- Placement Accuracy: down to +/- 1.5µm


typ. +/- 3.0µm

- High power IR laser for bond reflow
- Z height control
- Cantilever thickness: 20µm 100µm
- Min. Pitch: 50µm
- Process suitable for rework and complete card assembly
- Post Bond inspection

um omplete card assembly


Cantilever Design Rules

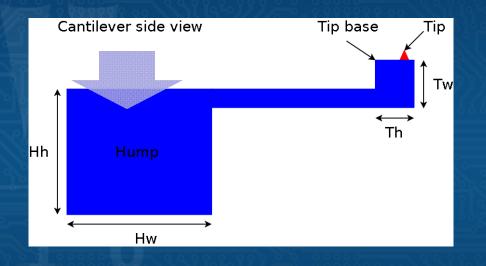
Hump needed for handling and laser energy absorption Hh ≥ 250 µm Hw ≥ 250 µm Tip base needed for alignment Th ≥ 10 µm Tw ≥ 10 µm

Pattern recognition & Fiducial Alignment

 Automatic X,Y substrate alignment after loading and bond stage rotation (W-axis)
 Pattern recognition with bond head camera
 Alignment accuracy: +/- 1 µm
 High contrast simple mark needed

Pattern recognition & Fiducial Alignment

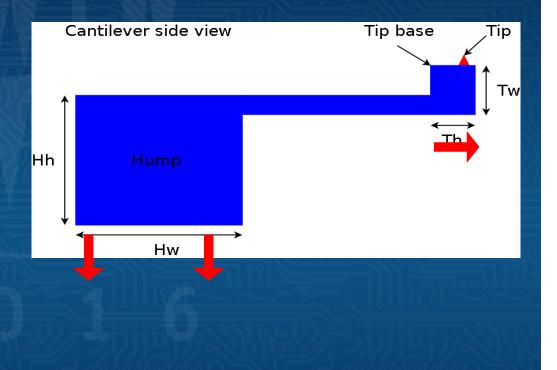
waffle pack, R2R, or other carrier system


- Pattern recognition of whole cantilever
- Detects position in waffle pack pocket (A,B axis)
- Discards defect cantilevers
- Sensor: Camera 4 on Pick & Flip unit
- Alignment accuracy: +/- 2.5 µm

Cantilever recognition in for tool transfer

- Pattern recognition of whole cantilever
- Detects transfer offsets for bond tool (B,D,Z axis)
- Discards defect cantilevers
- Sensor: Stationary Camera 2
- Alignment accuracy: +/- 2.5 µm, +/- 0.3°

Mechanical Correction


- Fitting of Cantilever into bond tool by touching down on a mechanical spring
- Force controlled

Optical Tip Alignment

An optical system determines

- X offset for bonding
- U angle correction
- Tilt (hump bottom <-> tip base
- Z-offset for bonding
- Two scans per measurement
 +/- 0.01 µm optical scan repeatability
- +/- 0.3 μm accuracy

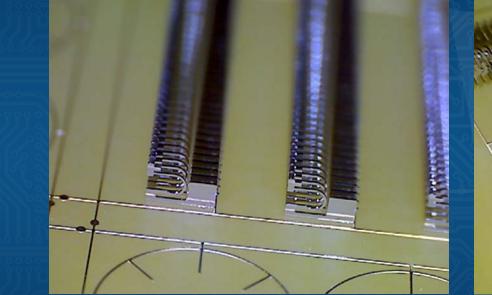
Alignment Summary

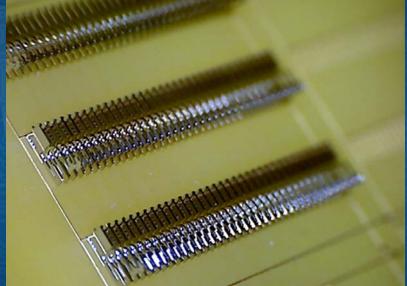
Step	Alignment procedure	Corrected axis	Sensor	Measured feature	Alignment Accuracy
1	Fiducial marks on substrate	X, Y, W	Bond head – Camera 1	100 µm high contrast circle or other geometrical shape	+/- 0.5 μm
2	Substrate height	Z	Laser Scanner or Touch Down	200 µm diameter height measurement mark or other location	+/- 0.05 μm (Laser) +/- 1 μm (Z-axis)
3	Detect cantilever in waffle pack	А, В	Pick & Flip Unit - Camera 4	Cantilever	+/- 2.5 µm
4	Rotation and alignment for spring transfer	Z, B, D	Stationary Camera 2	Cantilever	+/- 2.5 μm +/-0.5°
5	Mechanical spring correction	Z	Mechanical spring	Force detection	+/- 2 g
6	Optical scan alignment	X, U, Z, Tilt	Optical system	Тір	+/- 0.03 μm +/- 0.5 μm (axis) +/- 0.003°
7	Post bond hump/tip inspection	Χ, Υ	Bond head – Camera 1	Hump or tip	+/- 0.5 μm

Alignment Summary

Tip accuracy (machine capability):

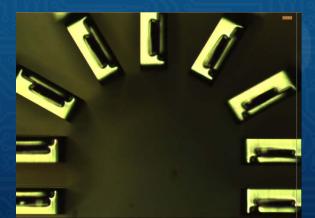
- in X +/- 1 µm
- in Y +/- 1 µm
- in Z +/- 2.5 µm

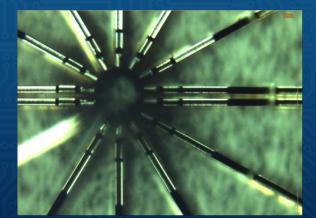

Post Bond Hump / Tip Inspection


- Sensor: Bond head camera 1
- Accuracy +/- 0.5 μm
- Results used for smart correction of next bond process
- Well defined edges for repeatable pattern detection needed

Cantilever Bonding Results

Cantilever Placement with LAPLACE-Can (80µm pitch)



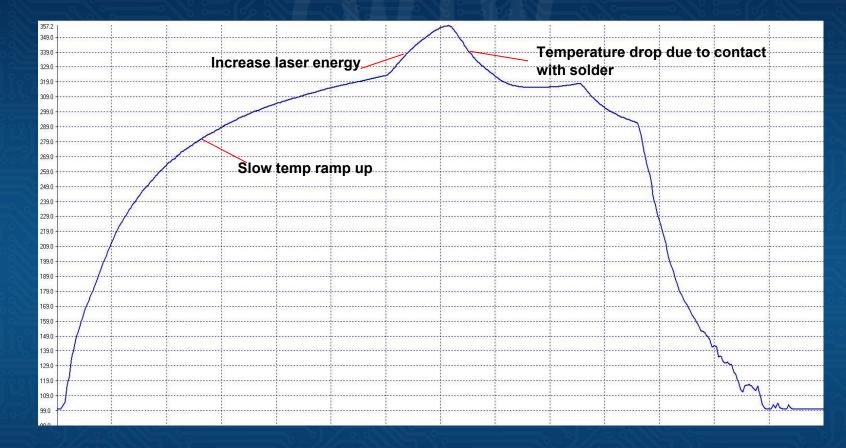

Cantilever Bonding Results

Cantilever Placement with LAPLACE-Can (60µm pitch)

Cantilever Placement with LAPLACE-Can (360°)

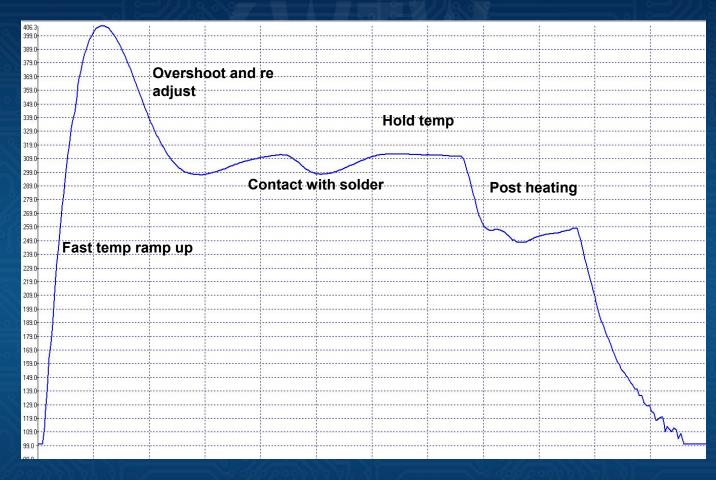
Process Data

X,Y Placement Accuracy


Depends on cantilever quality

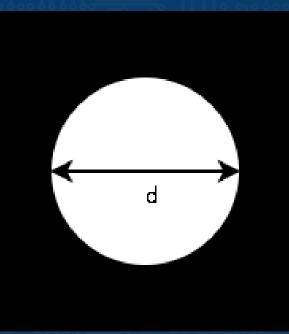
Summary		
Min Value [mm]	-0.0035	-0.0033
Max Value [mm]	0.0013	0.0021
Range [mm]	-0.0048	-0.0054
StDiv [mm]	0.00101357	0.00126077

Placement Speed 30µm cantilever width, 80µm pitch 9.5 sec per cantilever (w/o post inspection)< 13 sec per cantilever (with post inspection)


Probe Cards assembled NAND & DRAM: ~ 100+ Reliability Touchdown (mechanical): passed Electrical test: passed

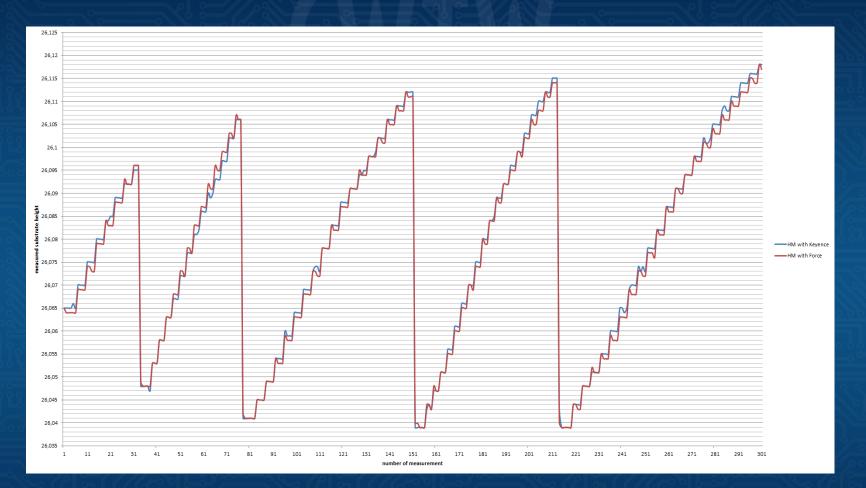
Temperature Profile- Current

Temperature profile without temperature control


Temperature Profile - Development

Temperature profile with temperature control

Substrate Height Measurement


Continuous substrate height measurement during bond process Height check via touch down on substrate ♦ Force resolution 5 g – 2000 g ♦ Alignment accuracy: +/- 1.5 µm (Z-axis) Measurement location on **UBM or other locations**

Available Height Measurement Methods

4 measurement methods Force (Standard) Accurate, but slow and touch of substrate Laser (Triangulation) Accurate, contactless, but very sensitive to surface roughness Laser (Spectrometry) ♦ Accurate, fast and contactless Laser (Confocal) Accurate, fast and contactless, small measurement spot (in test for tip z-height)

Result – Substrate Height Measurements

Comparison Laser Measurement vs Force Measurement

Result of Substrate Height Measurement

Laser spectrometry & force reached nearly the same results. The maximum deviation was 3µm.

Percentage distribution of deviations for all measurements:

- 0µm: 46%
- 1µm: 30%
- 2µm: 22%
- 3µm: 2%

Laplace-Can Test Run: Cantilever Positioning Accuracy

Positioning Accuracy	Tip X Error [mm]	Tip Y Error [mm]
Average	0,0002	0,0000
Min Value	-0,0033	-0,0021
Max Value	0,0033	0,0026
Range	-0,0066	-0,0047
StDiv	0,001819	0,000970

Sample: 1000 cantilever, Pitch: 100µm

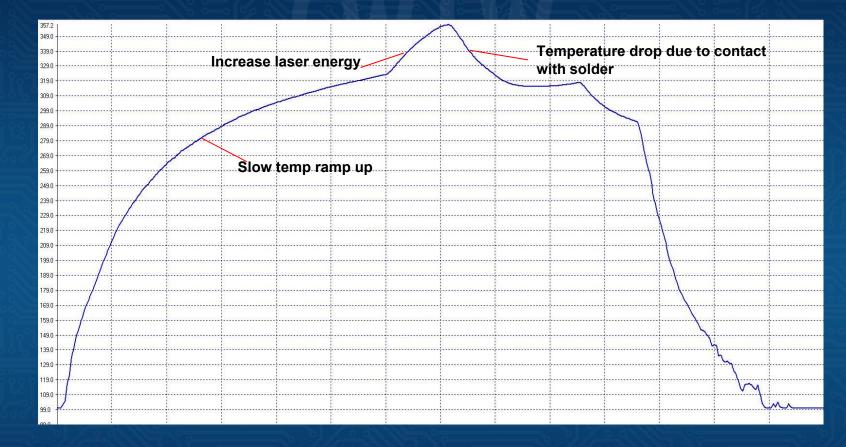
Cantilever Rework Video - Removal

CANTILEVER REMOVAL PAC TECH

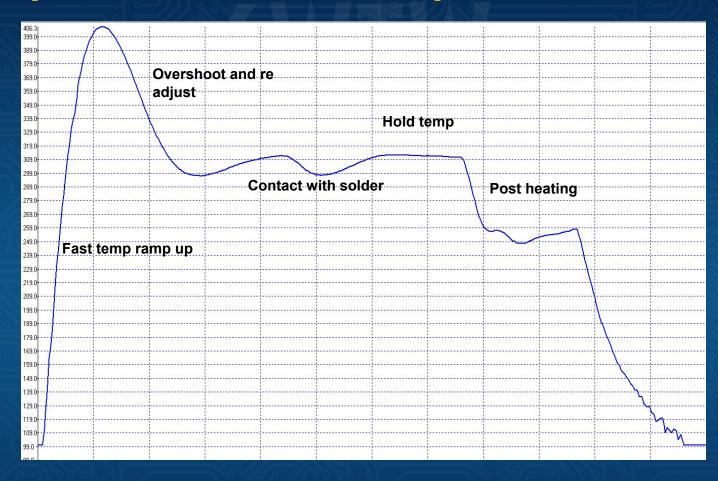
Cantilever Rework Video - Soldering

BUMPING ON CANTILEVER

Summary


- A new laser assisted sequential cantilever attach process has been presented
- Placement accuracies down to +/-1 µm in X,Y have been demonstrated
- Assembly throughput of 9.5 sec per spring has been observed
- Probe springs can be assembled with free 360 deg orientation
- A fine pitch capability down to 50µm has been accomplished
- The assembly process is capable of single spring rework

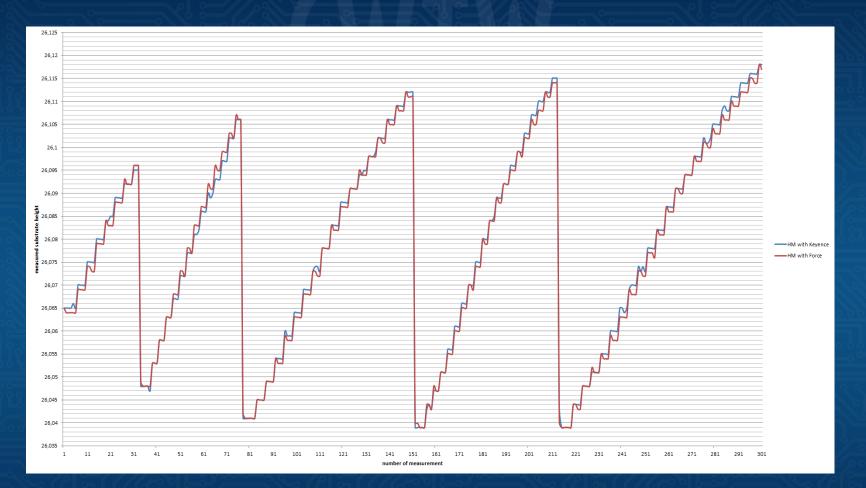
Process Cycle time


Complete process cycle time incl. Laser: 9,5sec

Temperature Profile- Standard

Temperature profile without temperature control

Temperature Profile - Improved



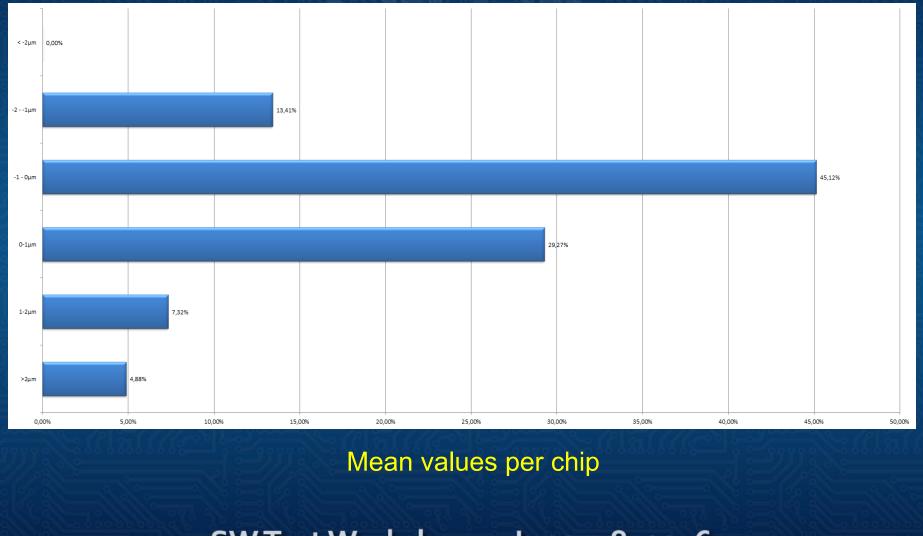
Temperature profile with temperature control

Height Measurement

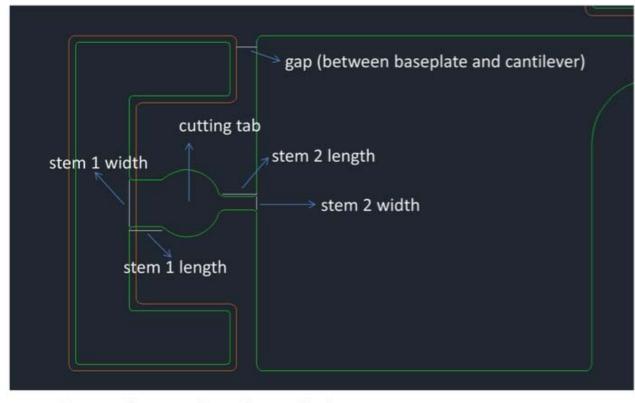
4 measurement methods Force (Standard) Accurate, but slow and touch of substrate Laser (Triangulation) Accurate, contactless, but very sensitive to surface roughness Laser (Spectrometry) Accurate, fast and contactless Laser (Confocal) Accurate, fast and contactless, small measurement spot (in test for tip z-height) SW Test Workshop - June 5-8, 2016

Result – Substrate Height Measurements

Comparison Laser Measurement vs Force Measurement


Result of Substrate Height Measurement

Laser spectrometry & force reached nearly the same results. The maximum deviation was 3µm.


Percentage distribution of deviations for all measurements:

- 0µm: 46%
- 1µm: 30%
- 2µm: 22%
- 3µm: 2%

Result – Height Measurements

Cantilever Cutting – Design Requirements

stem 1 – stem between baseplate and tab stem 2 – stem between tab and cantilever

Cantilever Cutting – Design Requirements

relation between stem-2-length and gap:

- stem-2-length should be about three times longer than gap

current dimensions stem-2-length: 42,72 μm gap: 30 μm

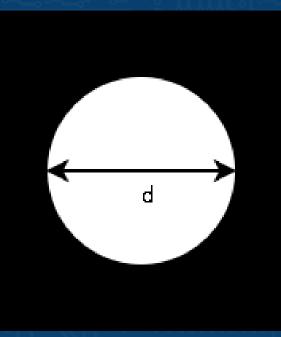
relation between width of stem 1 and stem 2

- width of stem 1 should only be two times thicker than width of stem 2

current dimensions stem 1 width: 70 μm stem 2 width: 20 μm ideal dimensions (for example) stem 1 width: 40 μm stem 2 width: 20 μm

ideal dimensions (for example)

15 µm


stem-2-length: 45 µm

gap:

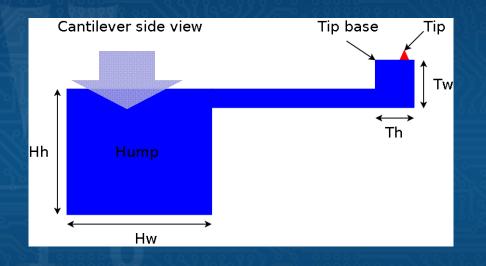
- diameter of tab should be about 100 μm
- moreover both stems and cutting tab should not be connected to ceramic substrate

Pattern recognition & Fiducial Alignment

 Automatic X,Y substrate alignment after loading and bond stage rotation (W-axis)
 Pattern recognition with bond head camera
 Alignment accuracy: +/- 1 µm
 High contrast simple mark needed

Pattern recognition & Fiducial Alignment

waffle pack, R2R, or other carrier system


- Pattern recognition of whole cantilever
- Detects position in waffle pack pocket (A,B axis)
- Discards defect cantilevers
- Sensor: Camera 4 on Pick & Flip unit
- Alignment accuracy: +/- 2.5 µm

Cantilever recognition in for tool transfer

- Pattern recognition of whole cantilever
- Detects transfer offsets for bond tool (B,D,Z axis)
- Discards defect cantilevers
- Sensor: Stationary Camera 2
- Alignment accuracy: +/- 2.5 µm, +/- 0.3°

Mechanical Correction

- Fitting of Cantilever into bond tool by touching down on a mechanical spring
- Force controlled

