

SW Test Workshop Semiconductor Wafer Test Workshop

## Thermal Testing of Singulated Devices Get Us Closer to Known-Good Die/Stack



| a 💻 b i | رهر کا کا کا کا |
|---------|-----------------|
|         |                 |
|         |                 |

Takashi Naito ADVANTEST

<u>Grant Wagner</u> IBM <u>Dave Armstrong</u> ADVANTEST

June 5-8, 2016



**1. Background** 2. Die Level Testing **3.** Challenges 4. Dual Fluid Thermal Control System **5. Thermal Evaluation** 6. Summary

## Background

### Technology Node Transitions are Slowing

The semiconductor industry moves quickly toward more and more 2.5D and 3D integration.

### KGD and KGSD are Critical for 2.5D/3D Integration

Without it final product yield.



Final Product Yield  $\leq$ 

 $\prod_{d=1} Yd \times \prod_{i=1} Yi$ 

Yd : Individual Die Yield Yi : Intercconection Yield n : Number of Stack Die

<u>Test Conference (ITC), 2014 IEEE International</u> Direct probing on large-array fine-pitch micro-bumps of a wide-I/O logic-memory interface EJ. Marinissen, B. De Wachter, K. Smith, J. Kiesewetter, M. Taouil, S. Hamdioui



# Challenges

### Thermal Control System for High Watt Density

- Low thermal resistance is needed to minimize temperature rise in die-level testing



### Rapid Setting Temperature Change

- High response thermal control for high power die
- Reducing die-level test time

### Thermal Model for New Thermal Control System

Predict thermal performance for variety die conditions
 SW Test Workshop - June 5-8, 2016

## **Dual Fluid Thermal Control System**

#### Feature

#### Low Thermal Resistance Chuck

- Liquid Cooling Chuck
- Microchannel Heat Transfer
- Low Temperature Gradient

#### Rapid Temperature Change

- Active Thermal Control
- Switching Hot and Cold Cooling Liquid
- Wide Temperature Range (-40 to 125C)



**Dual Fluid Chiller** 

# **Dual Fluid Thermal Chuck**





- Low Thermal Resistance
  - Microchannel Heat Transfer Matrix

### Low Temperature Gradient

Fresh Coolant is supplied to the entire of surface equally

### Vacuum Chuck

- Available die size is from 3x3mm to 33x33mm
- Capable of chucking a warped thin die

## HA1000 Die-Level Test System

### **Die-Level Test Solution**

#### Thick and Thin Die Handling

- Die size : 3x3 to 33x33mm
- Thickness : Minimum 75um

#### Fine Pitch Probing

- Vision Alignment
- Micro-Bump, Cu Pillar, TSV

#### High and Low Temp.

- Dual Fluid Thermal Control
- Temp. Range : -40 to 125C
- Cooling Capacity : 300 Watt



## **Thermal Evaluation Objectives**

Characterize performance of thermal chuck
 Make thermal model for simulate other conditions
 Explore possibility of new use models

## **Characterization of Thermal Chuck**

Evaluation items

 Steady State Thermal Resistance
 Temperature Gradient
 Cooling Capacity
 Effective Chip Area
 Single Insertion Multiple Temperature Test

# **Thermal Evaluation Environment**



## **Thermal Test Chip**





### 5X5 Cell

<u>Unit Cell</u>

Test chips are made up of a matrix of 2.54 mm square cells

Each cell contains 4 diodes and 2 heaters

- Maximum heat dissipation 12W/cell

# **Evaluation Conditions**

| Item                              | Condition                                                                       |  |  |
|-----------------------------------|---------------------------------------------------------------------------------|--|--|
| Test Chip Size                    | 1x1, 4x4, 5x5, 10x10 cell<br>(Unit Cell Size 2.54 x 2.54mm)                     |  |  |
| Max Power                         | < 380W<br>(Current limit of Probe)                                              |  |  |
| Set Temperature                   | 25C                                                                             |  |  |
| Fluid                             | HFE-7500                                                                        |  |  |
| Flow Rate                         | 1.0lpm                                                                          |  |  |
| Probe Card                        | Cobra Probe                                                                     |  |  |
| Probing Force                     | 25lbs and 70lbs (11.3kgf, 31.8kgf)<br>(Calculation Value from Servo Motor Amp.) |  |  |
| SW Test Workshop - June 5-8, 2016 |                                                                                 |  |  |

# **Evaluation Procedure**

- 1. Determine max power for 30C rise
- Temp vs power, steady state response at max power step

   Temperature gradient power on and off
- 3. Repeat multiple powers
  - 25%, 50% and 75% max power
- 4. Use steady state temp from each power step to plot temp vs power
  - Confirm linearity of temp vs power
  - Slope is steady state thermal resistance
- 5. Repeat for other chip size, adjusted power, same equipment conditions
  - 25%, 50%, 75%, 100% power
- 6. Assess impact of effective chip area, using 10x10 cell chip
  - Repeat steady state tests to create temp vs power curve
  - Power only 1x1, 5x5, 5x7 and full 10x10 cell area

### Max Power for 30C Rise (Individual 10x10 Chip)



### Chuck has cooling capacity of 305W for 30C rise.

Condition
 Die Size : 25.4 x 25.4mm (10X10 Cell)
 Fluid Temp, FR : 25C, 1.0lpm
 Probe Force : 70lbs(=31.8kgf)
 SWTest Workshop - June 5-8, 2016

### Thermal Resistance and Linearity Check (Individual 10x10 Chip)



### Chuck has a good linearity and Tres is less than 0.09C/W.

Condition
 Die Size : 25.4 x 25.4mm (10X10 Cell)
 Fluid Temp, FR : 25C, 1.0lpm
 Probe Force : 70lbs(=31.8kgf)
 SWTest Workshop - June 5-8, 2016

### Thermal Resistance of Chip Center (Individual Chip vs Effective Area)



Tres value is depends on the chip area and the contact force. SW Test Workshop - June 5-8, 2016

# **Thermal Model Details**

- Solidworks CAD model
- Comsol Multiphysics finite element analysis
- Took advantage of symmetry to cut model in half
- 10x10 cell chip (25.68 x25.68 mm)
  - Silicon
  - 200W heat load on die surface

### Thermal interface layer

- Air
- Increased layer thickness for model simplification, and increased thermal conductivity by the same factor to compensate. This was the starting point.
- Adjusted thermal conductivity for model correlation contact is more a weighted average of direct contact and air gap (iterative)

### Chuck

- Copper
- Heat transfer coefficient on backside to simulate chuck performance (iterative)



## **Model Results**



 A properly validated model can be used to predict performance for other device conditions (ie. power maps)

### **Model Correlation with Measured Data**



- 10x10 cell chip, 200W power step at 25lbs force
- Corner-to-center gradient from 42–59 C
  - SW Test Workshop June 5-8, 2016

21

### Single Insertion Multi-Temp Test (25C -> -10C -> 65C -> 25C)



Temperature Change Time at 25C -> -10C & -10C -> 65C is 1min.
 Same temperature rise suggests that chuck was able to keep good thermal contact condition at each set temperature.
 SW Test Workshop - June 5-8, 2016

## Summary

- 1. Low thermal resistance for a dry condition
  - 0.09C/W for 2.5cm x 2.5cm

### 2. Achieved excellent cooling capacity

- 50W/cm<sup>2</sup> for 30C Rise
- 300W for 30C Rise

### 3. Confirmed Single Insertion Multiple Temperature Test

- Rapid Temp. Change 25C->-10C & -10C->65C is 1min
- Possible to Reduce Waiting Time for Changing Temperature

# 4. Thermal model can be used to predict performance for other device conditions.

Dual fluid cooling system can provide a significant value for die-level thermal testing