

SW Test Workshop Semiconductor Wafer Test Workshop

Achieving higher speeds for CMOS Image Sensor Testing

FormFactor Inc.

Larry Levy Minoru Mikami

Hitachi Chemical Co.,Ltd.

June 5-8, 2016

Abstract

As CMOS Image Sensors continue to grow at ~10% CAGR, a part of that market is driven by the need for speed.

At SWTW in 2014 FormFactor and Advantest first presented the challenges of the test infrastructure keeping pace with the device speeds.

Since that time new requirements relating to the incorporation on lens modules in the probe card, have increased the difficulty of meeting this challenge. Last year we produced several card designs requiring 2.5Gbps for the differential pair and clock speeds as called out by MIPI D-PHY V1.2. However, new M-PHY opportunities require 3Gbps speeds for several differential pairs. In cooperation with Hitachi Chemical Co.,Ltd, using new PCB materials and design rules, we were able to achieve loss characteristics of the probe card that was comparable to traditional high speed CIS probe card performance without a lens module. An Eye pattern simulation that used actual S-parameter data indicated we finally have enough signal quality to meet 3Gbps. However, as we look toward the future our next target of 5Gbps may require some structural changes.

Levy, Mikami

Agenda

 Need for speed the sequel • How do we meet the testing needs? <u>– Tester + Probe card (system solution)</u> The bar has been raised Probe card design just became more difficult New PCB material required S-Parameter and Eye Pattern Measurement Summary and Next Steps

Need For Speed

Levy, Mikami

Image sensor applications

Levy, Mikami

Peshkova/Shutterstock.com

Levy, Mikami

Cell Phones

Levy, Mikami

SW Test Workshop - June 5-8, 2016

More Data Drives Need for Higher Speed

More Megapixels in cameras
Display resolution increasing for video and still

At least 21 models greater than 1080P resolution
At least 20 models with 4K video speeds

Need to take multiple pictures to get one good

high resolution picture
Apple video/picture feature

High Pixel Count Cell Phones

Microsoft Lumia 950 / 950 XL 20 MP camera

LG G5 16 MP camera

Samsung Galaxy S7 12 MP camera

4K video capture 5.2" Quad HD AMOLED Display with 564ppi

5.3" IPS Quantum QHD Display with 554 ppi

5.5"/5.1" Quad HD super AMOLED display

Apple 6<u>S 12 MP</u>

List of Cell Phones with 1440P Resolution

Brand	Model	Release month	Operatin g system	Display type	<u>Resoluti</u> on (pixels)	<u>Display</u> <u>size</u>	Pixel density (ppi)
ввк	Vivo Xplay 3S	March 2014	Funtouch OS	IPS LCD	2560x144 0	6.0 in (150 mm)	490
Fujitsu	ARROWS NX/F-02G	Novembe r 2014	Android 4.4	IPS LCD	2560x144 0	5.2 in (130 mm)	570
Gionee	ELife E8	June 2015	Android 5.1	AMOLED	2560x144 0	6.0 in (150 mm)	490
Huawei	Nexus 6P	Septemb er 2015	Android 6.0	AMOLED	2560x144 0	5.7 in (140 mm)	518
Lenovo	Vibe Z2 Pro K920	Septemb er 2014	Android 4.4	IPS LCD	2560x144 0	6.0 in (150 mm)	490
LG	<u>63</u>	May 2014	Android 4.4	IPS LCD	2560x144 0	5.5 in (140 mm)	538
LG	isai FL	July 2014	Android 4.4	IPS LCD	2560x144 U	5.5 in (140 mm)	538
LG	isai VL	Decembe r 2014	Android 4.4	AH-IPS	2560x144 o	5.5 in (140 mm)	538
Microsof t	<u>Lumia</u> 950	Novembe r 2015	<u>Windows</u> <u>10</u> Mobile	AMOLED	2560x144 0	5.2 in (130 mm)	570
Microsof t	<u>Lumia</u> 950 XL	Novembe r 2015	Windows 10 Mobile	AMOLED	2560×144 0	5.7 in (140 mm)	518
Motorola	Droid Turbo	October 2014	Android 4.4	AMOLED	2560x144 0	5.2 in (130 mm)	570
Motorola	<u>Nexus 6</u>	Novembe r 2014	Android 5	AMOLED	2560x144 0	5.96 in (151 mm)	493
OPPO	Find 7	May 2014	ColorOS	IPS LCD	2560x144 0	5.5 in (140 mm)	538
Philips	i966 Aurora	October 2014	YunOS 3.0	IPS LCD	2560x144 0	5.5 in (140 mm)	538
Samsung	Galaxy S5 LTE-A G906S	July 2014	TouchWi z Nature UX 3.5	<u>Super</u> AMOLED	2560x144 0	5.1 In (130 mm)	577
Samsung	<u>Galaxy</u> <u>Note 4</u>	October 2014	Android 4.4	<u>Super</u> <u>AMOLED</u>	2560x144 0	5.7 in (140 mm)	518
Samsung	<u>Galaxy</u> Note 5	August 2015	Android 5.1.1	Super AMOLED	2560x144 0	5.7 in (140 mm)	518
Samsung	<u>Galaxy S6</u>	April 2015	Android 5.1.1	Super AMOLED	2560x144 0	5.1 in (130 mm)	577
Samsung	<u>Galaxy S6</u> Edge	April 2015	Android 5.1.1	Super AMOLED	2560x144 0	5.1 in (130 mm)	577
Samsung	<u>Galaxy S6</u> <u>Edge+</u>	August 2015	Android 5.1.1	<u>Super</u> AMOLED	2560x144 N	5.7 in (140 mm)	518

- Apple 6S is 1080P
- Sony has an offering at 2160P

Wikipedia

Levy, Mikami

SW Test Workshop - June 5-8, 2016

There Are Over 20 Cell Phones that Shoot 4K Video

source: Phone Arena 2014

Levy, Mikami

How Do We Meet the Testing Needs?

Levy, Mikami

Presented in 2014 SW.

Systematic Approach Required

Levy, Mikami

Presented in 2014 SW.

SW Test Workshop - June 5-8, 2016

Phase2 PC

Phase2 PH

Probe Card Loss Phase 2 Results Summary

Loss @ F=1.5Ghz	1.2Gbps Design	3Gbps Design
Parallelism	64	64
Total Probe Card S21 Loss	-3db	1.72 to 2.32dB
3Gbps S21 Loss Goal	-2d	b
Judgment	Fail	Acceptable with minor adjustments
Total Probe Card Impedance @ Tr100ps		Pogo: 45.2 to 49.4Ω PCB: 45.9 to 51.9Ω
3Gbps S21 Loss Goal	47-5	3Ω
Judgment	Fail	Acceptable
	<u>smim</u>	
June 8-11,	2014 IEEE Worksho	p 21

Levy, Mikami

The Bar Has Been Raised

Levy, Mikami

CIS Probe Card with Lens Module

PCB & Probe Head Signal Trace

Larger Lens Drives Complexity Springs now overhang opening

Levy, Mikami

Lens Module

PCB and Probe Head

Optimized FormFactor Design rules

- Tight trace length adjustment
- Tight impedance control
- Optimal signal trace spacing

New PCB material required

Levy, Mikami

Target

Probe Card : High// CIS with Lens Module Signal Speed : MIPI D-PHY 3Gbps

Levy, Mikami

Multi Wire Board (MWB)

Crossover Wiring

Provided by Hitachi Chemical Co.,Ltd.

- Crossover wiring within one layer
- Two to three times as much wiring capacity as that of etching method boards
- Uniform copper wire diameter
- Provides stable electrical characteristics even if long wiring on big size board

PCB Material Dielectric Constant (DK) and Dissipation Factor (Df)

PCB Mate	erial	Dk @ 1GHz	Df @ 1GHz				
STD (Polyimide)	I-671	4.2 - 4.3	0.013 – 0.015				
High Performance	HE-679G(S)	3.7 – 3.9	0.006 - 0.008				
SW Test Workshop - June 5-8 2016							

PCB Material Characteristics

Loss at 1.5GHz: -1.7dB HE-679G(S), -2.0dB I671

Levy, Mikami

S-Parameter and Eye Pattern Measurement

Levy, Mikami

Probe Card Specifications

- PCB type : Multi Wire Board
- PCB material
- : High performance PCB material HE-679G(S)
- Array configuration: 4x8, 1 Skip Column and 1 Skip Row
- Probe Head

: Standard FormFactor Ceramic PH100

Measurement Apparatus

Differential Probe: Yokowo FCP-VPDF for Probe Head Spring

USB Camera

....

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Network Analyzer: Agilent E5071C

Measurement & Simulation Method

- **1.** Calibrated Network Analyzer
- 2. Measured Differential probe loss
 - Agilent N1021B
 - Yokowo FCP-VPDF
- 3. Measured S-Parameter
 - 5 site (1 pair / site)
 - Stimulation Amplitude 360mV (P-P)
 - Rise Time 100psec
- 4. Calculated Probe Card loss
- 5. Simulated Eye pattern from measured S-Parameter

Site Map

Calibration Method for Cable loss

Electronic calibration unit: Agilent N4433A

Calibration point (0dB)

To Probe Head side Differential probe

To POGO side Differential probe

- Calibrator : Agilent N4433A
- Calibration point: End of the cable
 Cancelled Network Analyzer cable loss

Probe Card Measurement Point

Probe Head Measurement point

Differential Probe Loss

Loss at 1.5GHz: -1.4dB

Sdd21 of Differential Probe

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Probe Card Loss

Loss at 1.5GHz: -3.1dB (U31) ~ -4.0dB (U15)

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Calculated Probe Card Loss

Loss at 1.5GHz: -1.7dB (U31) ~ -2.6dB (U15)

SDD21 of Calculated Probe Card (Without Differential Probe Loss)

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Eye Pattern Simulation Setting

- Input Signal setting:
 - Type: PRBS (Pseudo random bit sequence)
 - Length: 127bit
 - High Voltage: 360mV (P-P)
 - Low Voltage: 0V
 - Data Rate: 1.0Gbps ~ 3.5Gbps
 - Rise Time: 15% of Half cycle time (20-80%)
- Eye parameter calculation setting:
 - Rise Time: 20-80%

Levy, Mikami

1.0Gbps

Loss(Sdd21):

Best U31

Worst U15

1.5Gbps

Loss(Sdd21):

Best U31

Worst U15

-2.3dB @0.75GHz

-2.3dB @0.75GHz

Levy, Mikami

2.0Gbps

Loss(Sdd21):

Best U31

-2.8dB @1.0GHz

-2.6dB @1.0GHz

Levy, Mikami

SW Test Workshop - June 5-8, 2016

2.5Gbps

Loss(Sdd21):

Best U31

Worst U15

-3.2dB @1.25GHz

-2.8dB @1.25GHz

Levy, Mikami

3.0Gbps

Loss(Sdd21):

Best U31

Worst U15

-3.5dB @1.5GHz

-3.1dB @1.5GHz

Levy, Mikami

SW Test Workshop - June 5-8, 2016

3.5Gbps

Loss(Sdd21):

Best U31

Worst U15

-3.8dB @1.75GHz

-3.4dB @1.75GHz

Levy, Mikami

Eye Height

Height at 3.0Gbps: 190mv ~ 201mV (Input Signal 360mV)

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Jitter (P-P)

Jitter: Less than 25psec

Levy, Mikami

SW Test Workshop - June 5-8, 2016

Summary and Next Steps

Levy, Mikami

Summary 3Gbps Achieved

Probe card loss (Sdd21)

- Probe card loss was less than -2.6dB @1.5GHz
- Eye Pattern
 - Eye Height was more than 190mV @ 3Gbps
 - Jitter was shorter than 25psec regardless of the signal speed

3Gbps achieved with optimized FormFactor Design rules and high performance PCB material HE-679G(S)

Levy, Mikami

Next Step

High// 5Gbps Probe Card Concept

Acknowledgements

- Team Member
 - Hitachi Chemical Co.,Ltd.
 - Seiichi Kurihara
 - Noriaki Watanabe
 - Hiroyuki Mukouyama
 - FormFactor Japan
 - Nobuhiro Kawamata
 - Hiromitsu Sasanami
 - Yoichi Funatoko