

SW Test Workshop Semiconductor Wafer Test Workshop

High Voltage, High Temperature, High Current... ...and sometimes all come together at the same time!

Dr. Gerhard Schmidt Georg Franz, Dr. Rainer Gaggl
Infineon Technologies Austria AG T.I.P.S. Messtechnik GmbH

Overview

- High Power Devices Challenges for Wafer Test
- ...some Physics
- High Voltage + High Temperature: "Why's that?"
- Lab Test: Full Wafer HV HT contactor
- Production Test: SiC, GaN and more...
- "Hot-Cold Air Stream" High Voltage Probe Card

High Voltage on Wafer - Challenges

HV Flashovers

- If test voltage exceeds insulation strength of atmosphere:
- known as "arcing", "sparks", "flashovers"
 - can have unwanted effects for the device under test ...

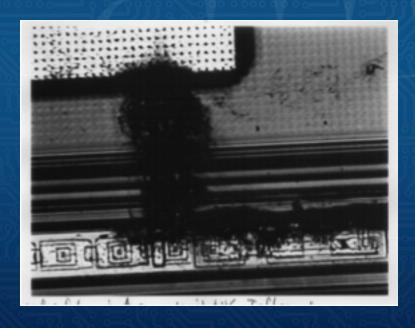


Fig. 1:
Damage on
wafer
surface
(IGBT) due
to flashover
between
source-pad
and dicing
frame
structure

High Voltage – some Physics...

 Flashover Mechanism: Avalanche Ionization of Gas Molecules, "Arc Discharge"

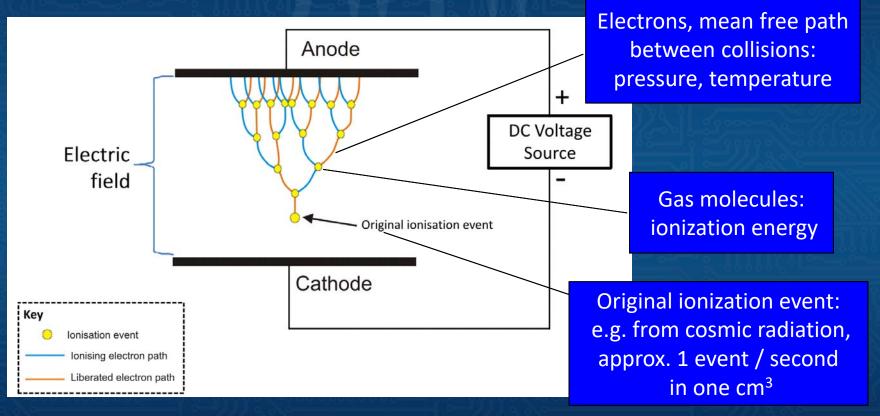


Fig. 2: Visualisation of a Townsend Avalanche *)

*) picture source: Wikipedia

...more Physics!

Physics of "Gas Discharges"

first described by Friedrich Paschen in his PhD thesis in 1889: 1)

"Breakdown voltage between two electrodes in a gas is a function of gap distance and pressure" (Paschen's law).

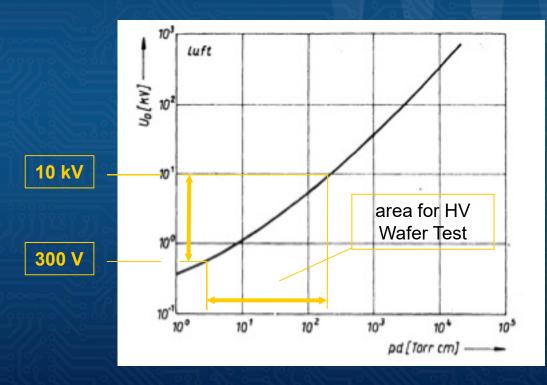
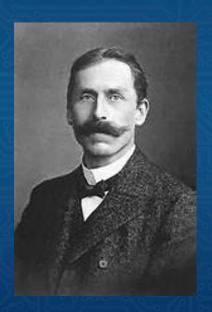



Fig. 3: Paschen Curve for air ²⁾

Friedrich Paschen *)

*) picture source: Wikipedia

High Voltage and Temperature...

- Ideal Gas: Molecule density is temperature dependent
 - the higher the temperature, the lower the molecule density and the
 higher the mean-free path for a given pressure e.g. atmospheric pressure
 - increased mean-free-path length leads to lower flashover voltage
 - mathematical description by the "Ideal Gas Law": p V = n R T
- Thus: Increasing pressure -> increased arcing voltage
- Increasing temperature -> decreasing arcing voltage
 - rules of thumb:
 - Doubling (absolute) pressure will double arcing voltage.
 - Increasing test temperature from room temperature 23 °C to 150 °C will decrease arcing voltage by 33 % or require pressure increased by 50 % (absolute) to compensate for.

Case 1: Hot Temp and High Voltage Lab Test... "Why's that?"

- Characterization of Temperature Dependence of Avalanche Breakdown in IGBT Termination Structures
 - needed during development of "VLD (<u>v</u>ariation of <u>l</u>ateral <u>d</u>oping)
 termination structure" Infineon Technologies

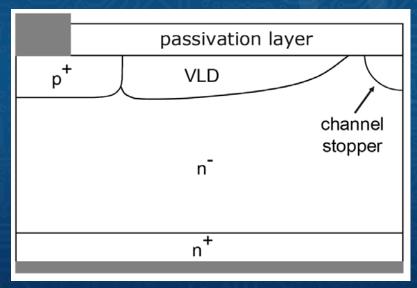


Fig. 4: Schematic cross section of VLD termination structure ³⁾

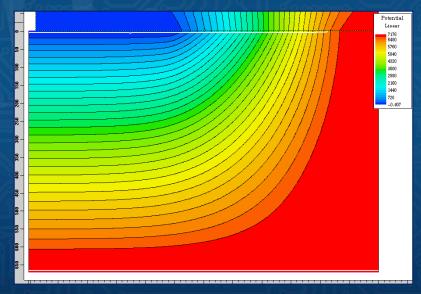


Fig. 5: Simulation of electric field in termination structure at U = 7200 V

New chip design - HV verification

 Measurement task: HV blocking capabilities of different chip design versions over temperature

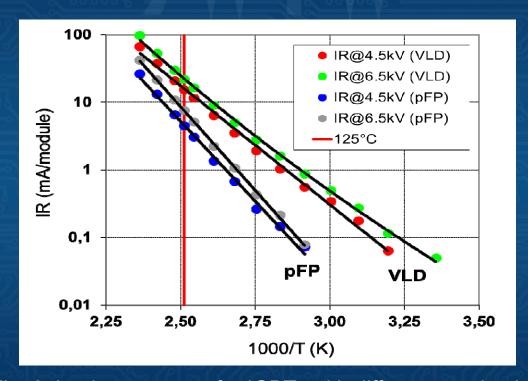
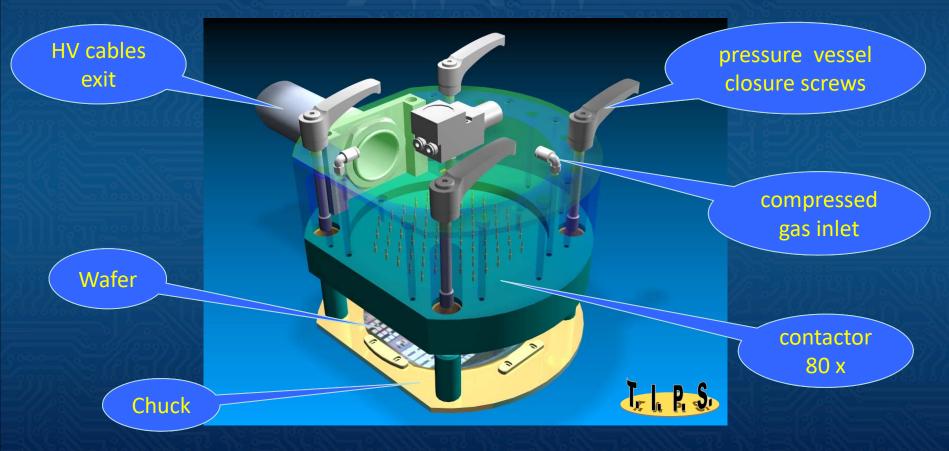
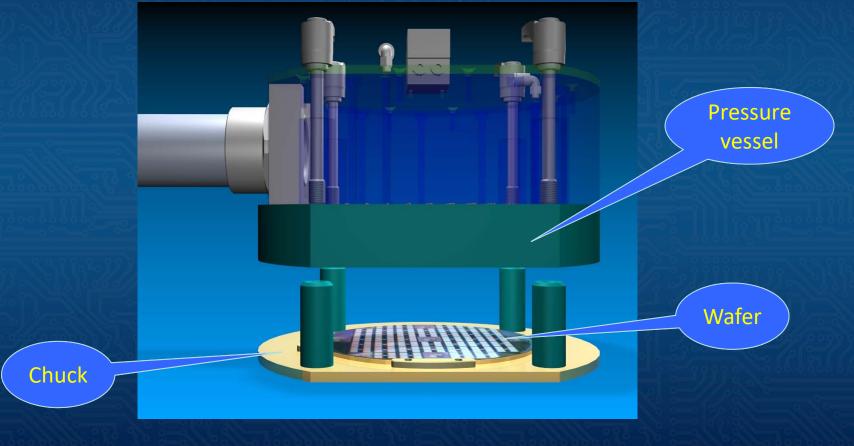


Fig. 6: Leakage current for IGBTs with different termination structures as a function of temperature ³⁾


HV chip design verification

- High numbers of measurements to be done for good statistical significance
 - "Classic" laboratory characterization approach with manipulator probes is extremely time consuming due to complicated chip preparation required – wouldn't meet timelines requested...

HV Full Wafer Contactor


• 6" full wafer wafer single touchdown, 80 x parallel test, 10 kV capable, - 40 °C - 175 °C, max. 4 bar pressure vessel

SW Test Workshop - June 5-8, 2016

HV Full Wafer Contactor (2)

 "non-gas-loss" design: instead of compressed air also use of compressed HV insulating gas (SF6) is possible

SW Test Workshop - June 5-8, 2016

"HV - Messplatz, Villach"

HV enclosure cabinet

Dr. Gerhard Schmidt

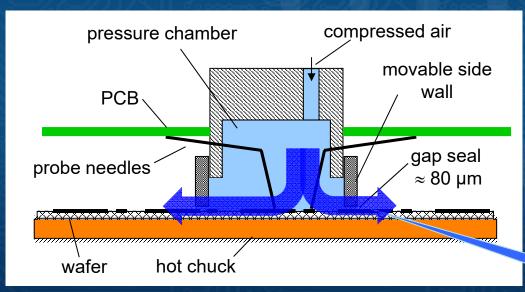
> HV full wafer contactor

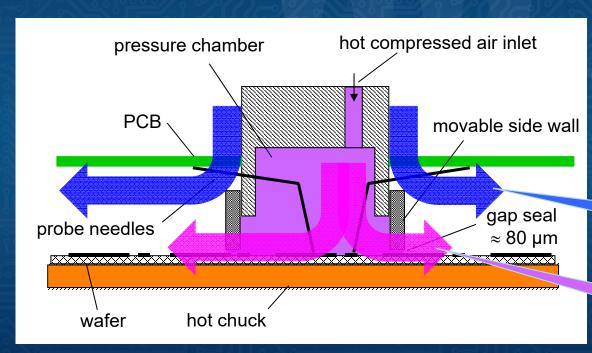
Summary – Lab Test Setup

- 6" full wafer contactor allows fast high voltage characterization of HV IGBT and diodes and greatly speeds up development for new HV chip designs.
- Full temperature range coverage from 40 °C 175 °C,
- lossless pressure vessel allows (restricted) use of insulating gases (e.g. SF6) for most demanding applications
- Very low parasitic current leakage (1 nA @ 10 kV)

Case 2: Production Wafer Sort

- Device under test: one of the "exotic" SiC, GaN... specimens
- 900 V 20 A 175 °C and very narrow HV structures
 - First proposal: use off-the- shelf TIPS High Voltage "LuPo" probe card with floating air bearing seal, supplied with compressed air at ambient temperature, hot chuck




Fig. 7: Schematics of compressed air "LuPo" probe card

- Air flow causes sharp temperature drop at DUT location
- Thermo-Chuck temperature control "dances polka" when facing local chuck cooling.

cool air flow

Hot-Cold-Airstream Probe Card

- compressed hot air at chuck temperature to create hot compressed air test emvironment
- cold air stream to insulate probe card components from heat

to "tune" thermal gradients during probe card mechanical design

cold air flow hot air

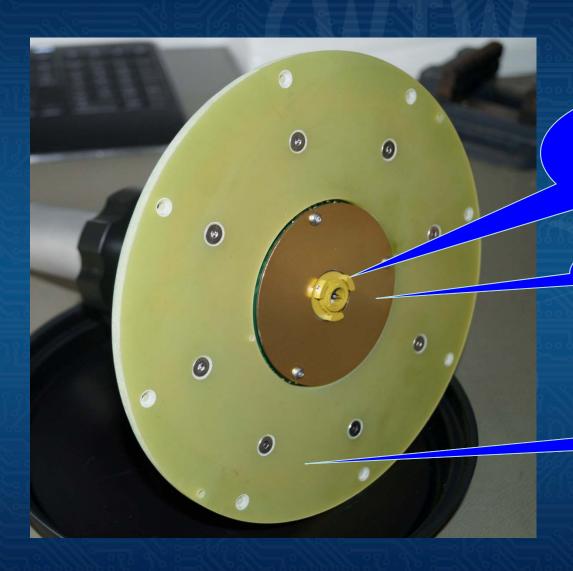

flow

Fig. 8: Schematics of Hot-Cold-Airstream "LuPo" probe card

Hot-Cold-Airstream Probe Card (2)

Hot-Cold-Airstream Probe Card (3)

Needle spider with "LuPo G3" pressure chamber

baffle

Probe card PCB bottom

Conclusion

- High Voltage High Current High Temperature wafer probing is feasible – but with "hard constraints" imposed by physics
- For production test: It's like having a hot air gun inside your prober – So if you can avoid it...
- If you can't avoid it...
 at least be careful not to burn your fingers! ©

Thank you for your attention!

Acknowledgements

- unnamed customers willing to try out new things...
- our design and manufacturing team at T.I.P.S.

References

- 1) "Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz", F. Paschen, Annalen der Physik, vol. 273, no. 5, pp. 69 96, 1889
- 2) Der elektrische Durchschlag in Gasen, H.Hess, Vieweg Verlag 1976, ISBN 3528068183 9783528068189
- 3) **6.5kV IGBT and FWD with Trench and VLD Technology for reduced Losses and high dynamic Ruggedness**, Thomas Duetemeyer1), Josef-Georg Bauer2), Elmar Falck2), Carsten Schaeffer3), G. Schmidt3), Burkhard Stemmer1), PCIM Europe 2008 Conference Proceedings, ISBN: 978-3-89838-605-0